设为首页 收藏本站
查看: 1165|回复: 0

[经验分享] python中下划线的用法

[复制链接]

尚未签到

发表于 2015-4-22 10:44:57 | 显示全部楼层 |阅读模式
python中下划线的用法

(2012-02-27 13:07:07)

转载


标签:
杂谈

分类: python


  Python 用下划线作为变量前缀和后缀指定特殊变量
  _xxx 不能用’from module import *’导入
  __xxx__ 系统定义名字
  __xxx 类中的私有变量名
  核心风格:避免用下划线作为变量名的开始。
  
  因 为下划线对解释器有特殊的意义,而且是内建标识符所使用的符号,我们建议程序员避免用下划线作为变量名的开始。一般来讲,变量名_xxx被看作是“私有 的”,在模块或类外不可以使用。当变量是私有的时候,用_xxx 来表示变量是很好的习惯。因为变量名__xxx__对Python 来说有特殊含义,对于普通的变量应当避免这种命名风格。
  “单下划线” 开始的成员变量叫做保护变量,意思是只有类对象和子类对象自己能访问到这些变量;
“双下划线” 开始的是私有成员,意思是只有类对象自己能访问,连子类对象也不能访问到这个数据。
  以 单下划线开头(_foo)的代表不能直接访问的类属性,需通过类提供的接口进行访问,不能用“from xxx import *”而导入;以双下划线开头的(__foo)代表类的私有成员;以双下划线开头和结尾的(__foo__)代表python里特殊方法专用的标识,如 __init__()代表类的构造函数。
  现在我们来总结下所有的系统定义属性和方法, 先来看下保留属性:

>>> Class1.__doc__ # 类型帮助信息 'Class1 Doc.' >>> Class1.__name__ # 类型名称 'Class1' >>> Class1.__module__ # 类型所在模块 '__main__' >>> Class1.__bases__ # 类型所继承的基类 (,) >>> Class1.__dict__ # 类型字典,存储所有类型成员信息。  >>> Class1().__class__ # 类型  >>> Class1().__module__ # 实例类型所在模块 '__main__' >>> Class1().__dict__ # 对象字典,存储所有实例成员信息。 {'i': 1234}
接下来是保留方法,可以把保留方法分类:
类的基础方法

序号目的所编写代码Python 实际调用

初始化一个实例
x = MyClass()
x.__init__()


字符串的“官方”表现形式
repr(x)
x.__repr__()


字符串的“非正式”值
str(x)
x.__str__()


字节数组的“非正式”值
bytes(x)
x.__bytes__()


格式化字符串的值
format(x, format_spec)
x.__format__(format_spec)


  • 对 __init__() 方法的调用发生在实例被创建 之后 。如果要控制实际创建进程,请使用 __new__() 方法。
  • 按照约定, __repr__() 方法所返回的字符串为合法的 Python 表达式。
  • 在调用 print(x) 的同时也调用了 __str__() 方法。
  • 由于 bytes 类型的引入而从 Python 3 开始出现

行为方式与迭代器类似的类

序号目的所编写代码Python 实际调用

遍历某个序列
iter(seq)
seq.__iter__()


从迭代器中获取下一个值
next(seq)
seq.__next__()


按逆序创建一个迭代器
reversed(seq)
seq.__reversed__()


  • 无论何时创建迭代器都将调用 __iter__() 方法。这是用初始值对迭代器进行初始化的绝佳之处。
  • 无论何时从迭代器中获取下一个值都将调用 __next__() 方法。
  • __reversed__() 方法并不常用。它以一个现有序列为参数,并将该序列中所有元素从尾到头以逆序排列生成一个新的迭代器。

计算属性


序号目的所编写代码Python 实际调用

获取一个计算属性(无条件的)
x.my_property
x.__getattribute__('my_property')


获取一个计算属性(后备)
x.my_property
x.__getattr__('my_property')


设置某属性
x.my_property = value
x.__setattr__('my_property',value)


删除某属性
del x.my_property
x.__delattr__('my_property')


列出所有属性和方法
dir(x)
x.__dir__()


  • 如果某个类定义了 __getattribute__() 方法,在 每次引用属性或方法名称时 Python 都调用它(特殊方法名称除外,因为那样将会导致讨厌的无限循环)。
  • 如果某个类定义了 __getattr__() 方法,Python 将只在正常的位置查询属性时才会调用它。如果实例 x定义了属性 color, x.color 将 不会 调用x.__getattr__('color');而只会返回 x.color 已定义好的值。
  • 无论何时给属性赋值,都会调用 __setattr__() 方法。
  • 无论何时删除一个属性,都将调用 __delattr__() 方法。
  • 如果定义了 __getattr__() 或 __getattribute__() 方法, __dir__() 方法将非常有用。通常,调用 dir(x) 将只显示正常的属性和方法。如果 __getattr()__方法动态处理 color 属性, dir(x) 将不会将 color 列为可用属性。可通过覆盖 __dir__() 方法允许将 color 列为可用属性,对于想使用你的类但却不想深入其内部的人来说,该方法非常有益。
  

行为方式与函数类似的类
  可以让类的实例变得可调用——就像函数可以调用一样——通过定义 __call__() 方法。

序号目的所编写代码Python 实际调用

像调用函数一样“调用”一个实例
my_instance()
my_instance.__call__()
  zipfile 模块 通过该方式定义了一个可以使用给定密码解密 经加密 zip 文件的类。该 zip 解密 算法需要在解密的过程中保存状态。通过将解密器定义为类,使我们得以在 decryptor 类的单个实例中对该状态进行维护。状态在 __init__() 方法中进行初始化,如果文件 经加密 则进行更新。但由于该类像函数一样“可调用”,因此可以将实例作为 map() 函数的第一个参数传入,代码如下:

# excerpt from zipfile.py class _ZipDecrypter: def __init__(self, pwd): self.key0 = 305419896 ① self.key1 = 591751049 self.key2 = 878082192 for p in pwd: self._UpdateKeys(p) def __call__(self, c): ② assert isinstance(c, int) k = self.key2 | 2 c = c ^ (((k * (k^1)) >> & 255) self._UpdateKeys(c) return c zd = _ZipDecrypter(pwd) ③ bytes = zef_file.read(12) h = list(map(zd, bytes[0:12])) ④

  • _ZipDecryptor 类维护了以三个旋转密钥形式出现的状态,该状态稍后将在 _UpdateKeys() 方法中更新(此处未展示)。
  • 该类定义了一个 __call__() 方法,使得该类可像函数一样调用。在此例中,__call__() 对 zip 文件的单个字节进行解密,然后基于经解密的字节对旋转密码进行更新。
  • zd 是 _ZipDecryptor 类的一个实例。变量 pwd 被传入 __init__() 方法,并在其中被存储和用于首次旋转密码更新。
  • 给出 zip 文件的头 12 个字节,将这些字节映射给 zd 进行解密,实际上这将导致调用 __call__() 方法 12 次,也就是 更新内部状态并返回结果字节 12 次。

行为方式与序列类似的类
  如果类作为一系列值的容器出现——也就是说如果对某个类来说,是否“包含”某值是件有意义的事情——那么它也许应该定义下面的特殊方法已,让它的行为方式与序列类似。

序号目的所编写代码Python 实际调用

序列的长度
len(seq)
seq.__len__()


了解某序列是否包含特定的值
x in seq
seq.__contains__(x)
  cgi 模块 在其 FieldStorage 类中使用了这些方法,该类用于表示提交给动态网页的所有表单字段或查询参数。

# A script which responds to http://example.com/search?q=cgi import cgi fs = cgi.FieldStorage() if 'q' in fs: ① do_search() # An excerpt from cgi.py that explains how that works class FieldStorage: . . . def __contains__(self, key): ② if self.list is None: raise TypeError('not indexable') return any(item.name == key for item in self.list) ③ def __len__(self): ④ return len(self.keys()) ⑤

  • 一旦创建了 cgi.FieldStorage 类的实例,就可以使用 “in” 运算符来检查查询字符串中是否包含了某个特定参数。
  • 而 __contains__() 方法是令该魔法生效的主角。
  • 如果代码为 if 'q' in fs,Python 将在 fs 对象中查找 __contains__() 方法,而该方法在 cgi.py中已经定义。'q' 的值被当作 key 参数传入__contains__() 方法。
  • 同样的 FieldStorage 类还支持返回其长度,因此可以编写代码 len(fs) 而其将调用 FieldStorage的 __len__() 方法,并返回其识别的查询参数个数。
  • self.keys() 方法检查 self.list is None 是否为真值,因此 __len__ 方法无需重复该错误检查。

行为方式与字典类似的类
  在前一节的基础上稍作拓展,就不仅可以对 “in” 运算符和 len() 函数进行响应,还可像全功能字典一样根据键来返回值。

序号目的所编写代码Python 实际调用

通过键来获取值
x[key]
x.__getitem__(key)


通过键来设置值
x[key] = value
x.__setitem__(key, value)


删除一个键值对
del x[key]
x.__delitem__(key)


为缺失键提供默认值
x[nonexistent_key]
x.__missing__(nonexistent_key)
  cgi 模块 的 FieldStorage 类 同样定义了这些特殊方法,也就是说可以像下面这样编码:

# A script which responds to http://example.com/search?q=cgi import cgi fs = cgi.FieldStorage() if 'q' in fs: do_search(fs['q']) ① # An excerpt from cgi.py that shows how it works class FieldStorage: . . . def __getitem__(self, key): ② if self.list is None: raise TypeError('not indexable') found = [] for item in self.list: if item.name == key: found.append(item) if not found: raise KeyError(key) if len(found) == 1: return found[0] else: return found

  • fs 对象是 cgi.FieldStorage 类的一个实例,但仍然可以像 fs['q'] 这样估算表达式。
  • fs['q'] 将 key 参数设置为 'q' 来调用 __getitem__() 方法。然后它将在其内部维护的查询参数列表 (self.list) 中查找一个 .name 与给定键相符的字典项。

可比较的类
  我将此内容从前一节中拿出来使其单独成节,是因为“比较”操作并不局限于数字。许多数据类型都可以进行比较——字符串、列表,甚至字典。如果要创建自己的类,且对象之间的比较有意义,可以使用下面的特殊方法来实现比较。

序号目的所编写代码Python 实际调用

相等
x == y
x.__eq__(y)


不相等
x != y
x.__ne__(y)


小于
x < y
x.__lt__(y)


小于或等于
x  y
x.__gt__(y)


大于或等于
x >= y
x.__ge__(y)


布尔上上下文环境中的真值
if x:
x.__bool__()

  ?如果定义了 __lt__() 方法但没有定义 __gt__() 方法,Python 将通过经交换的算子调用__lt__() 方法。然而,Python 并不会组合方法。例如,如果定义了 __lt__() 方法和__eq()__ 方法,并试图测试是否 x

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-59546-1-1.html 上篇帖子: Python注释 下篇帖子: Python常见数据结构整理
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表