#!/usr/bin/env python
import numpy as np
import nose
import random
from matplotlib import pylab
def dist(x,y):
return np.sqrt(np.sum((x-y)**2))
def distMat(X,Y):
mat=[]
for x in X:
mat.append(map(lambda y:dist(x,y),Y))
return np.mat(mat)
def sum_dist(data,label,center):
s=0
for i in range(data.shape[0]):
s+=dist(data,center[label])
return s
def kmeans(data,cluster,threshold=1.0e-19,maxIter=100):
m=len(data)
labels=np.zeros(m)
center=np.array(random.sample(data,cluster))
s=sum_dist(data,labels,center)
print s
#iterator times
n=0
print center
while 1:
n=n+1
tmp_mat=distMat(data,center)
labels=tmp_mat.argmin(axis=1)
color=['r*','w^','y+']
pylab.hold(False)
for i in range(cluster):
idx=(labels==i).nonzero()
#print "idx is",idx[0]
#print data[idx[0]]
center=np.mean(data[idx[0]],axis=1)
#center=data[idx[0]].mean(axis=0)
d_i=data[idx[0]]
d_i=d_i[0]
#print 'd_i',d_i[0:-1,0]
pylab.plot(d_i[0:-1,0],d_i[0:-1,1],color)
pylab.hold(True)
print 'center ',center[0]
pylab.scatter(center[0],center[1],s=1000,marker='.',c='r')
pylab.show()
s1=sum_dist(data,labels,center)
print s1
if s-s1maxIter:
break
print n
return center
import scipy.io as si
if __name__=='__main__':
data=si.loadmat('a.mat')
data=data['a']
center=kmeans(data,3)
print center