设为首页 收藏本站
查看: 440|回复: 0

[经验分享] Hadoop2.7的配置部署及测试

[复制链接]

尚未签到

发表于 2018-10-30 08:31:19 | 显示全部楼层 |阅读模式
  1.环境准备:
  安装Centos6.5的操作系统
  下载hadoop2.7版本的软件
  wget http://124.205.69.132/files/224400000162626A/mirrors.hust.edu.cn/apache/hadoop/common/stable/hadoop-2.7.1.tar.gz
  下载jdk1.87版本的软件
  wget http://download.oracle.com/otn-pub/java/jdk/8u60-b27/jdk-8u60-linux-x64.tar.gz?AuthParam=1443446776_174368b9ab1a6a92468aba5cd4d092d0
  2.修改/etc/hosts文件及配置互信:
  在/etc/hosts文件中增加如下内容:
  192.168.1.61 host61
  192.168.1.62 host62
  192.168.1.63 host63
  配置好各服务器之间的ssh互信
  3.添加用户,解压文件并配置环境变量:
  useradd hadoop
  passwd hadoop
  tar -zxvf hadoop-2.7.1.tar.gz
  mv hadoop-2.7.1 /usr/local
  ln -s hadoop-2.7.1 hadoop
  chown -R hadoop:hadoop hadoop-2.7.1
  tar -zxvf jdk-8u60-linux-x64.tar.gz
  mv jdk1.8.0_60 /usr/local
  ln -s jdk1.8.0_60 jdk
  chown -R root:root jdk1.8.0_60
  echo 'export JAVA_HOME=/usr/local/jdk' >>/etc/profile
  echo 'export PATH=/usr/local/jdk/bin:$PATH' >/etc/profile.d/java.sh
  4.修改hadoop配置文件:
  1)修改hadoop-env.sh文件:
  cd /usr/local/hadoop/etc/hadoop/hadoop-env.sh
  sed -i 's%#export JAVA_HOME=${JAVA_HOME}%export JAVA_HOME=/usr/local/jdk%g' hadoop-env.sh
  2)修改core-site.xml,在最后添加如下内容:
  
  
  fs.default.name
  hdfs://host61:9000/
  
  
  hadoop.tmp.dir
  /home/hadoop/temp
  
  
  3)修改hdfs-site.xml文件:
  
  
  dfs.replication
  3
  
  
  4)修改mapred-site.xml
  
  
  mapred.job.tracker
  host61:9001
  
  
  5)配置masters
  host61
  6)配置slaves
  host62
  host63
  5.用同样的方式配置host62及host63
  6.格式化分布式文件系统
  /usr/local/hadoop/bin/hadoop namenode format
  7.替换hadoop的库文件:
  mv /usr/local/hadoop/lib/native /usr/local/hadoop/lib/native_old
  将编译好的hadoop文件下的lib/native文件夹复制过来;
  8.运行hadoop
  1)/usr/local/hadoop/sbin/start-dfs.sh
  2)/usr/local/hadoop/sbin/start-yarn.sh
  9.检查:
  [root@host61 sbin]# jps
  4532 ResourceManager
  4197 NameNode
  4793 Jps
  4364 SecondaryNameNode
  [root@host62 ~]# jps
  32052 DataNode
  32133 NodeManager
  32265 Jps
  [root@host63 local]# jps
  6802 NodeManager
  6963 Jps
  6717 DataNode
  10.通过web了解hadoop:
  namenode的信息:
  http://192.168.1.61:50070/
  secondnamenode的信息:
  http://192.168.1.61:50090/
  datanode的信息:
  http://192.168.1.62:50075/
  11.测试
  echo "this is the first file" >/tmp/mytest1.txt
  echo "this is the second file" >/tmp/mytest2.txt
  cd /usr/local/hadoop/bin;
  [hadoop@host61 bin]$ ./hadoop fs -mkdir /in
  [hadoop@host61 bin]$ ./hadoop fs -put /tmp/mytest*.txt /in
  [hadoop@host61 bin]$ ./hadoop fs -ls /in
  Found 2 items
  -rw-r--r--   3 hadoop supergroup         23 2015-10-02 18:45 /in/mytest1.txt
  -rw-r--r--   3 hadoop supergroup         24 2015-10-02 18:45 /in/mytest2.txt
  [hadoop@host61 hadoop]$ ./bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar  wordcount /in /out
  15/10/02 18:53:30 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id
  15/10/02 18:53:30 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
  15/10/02 18:53:34 INFO input.FileInputFormat: Total input paths to process : 2
  15/10/02 18:53:35 INFO mapreduce.JobSubmitter: number of splits:2
  15/10/02 18:53:38 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_local1954603964_0001
  15/10/02 18:53:40 INFO mapreduce.Job: The url to track the job: http://localhost:8080/
  15/10/02 18:53:40 INFO mapreduce.Job: Running job: job_local1954603964_0001
  15/10/02 18:53:40 INFO mapred.LocalJobRunner: OutputCommitter set in config null
  15/10/02 18:53:40 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
  15/10/02 18:53:40 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
  15/10/02 18:53:41 INFO mapred.LocalJobRunner: Waiting for map tasks
  15/10/02 18:53:41 INFO mapred.LocalJobRunner: Starting task: attempt_local1954603964_0001_m_000000_0
  15/10/02 18:53:41 INFO mapreduce.Job: Job job_local1954603964_0001 running in uber mode : false
  15/10/02 18:53:41 INFO mapreduce.Job:  map 0% reduce 0%
  15/10/02 18:53:41 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
  15/10/02 18:53:41 INFO mapred.Task:  Using ResourceCalculatorProcessTree : [ ]
  15/10/02 18:53:41 INFO mapred.MapTask: Processing split: hdfs://host61:9000/in/mytest2.txt:0+24
  15/10/02 18:53:51 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)
  15/10/02 18:53:51 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100
  15/10/02 18:53:51 INFO mapred.MapTask: soft limit at 83886080
  15/10/02 18:53:51 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600
  15/10/02 18:53:51 INFO mapred.MapTask: kvstart = 26214396; length = 6553600

  15/10/02 18:53:51 INFO mapred.MapTask: Map output collector>  15/10/02 18:53:52 INFO mapred.LocalJobRunner:
  15/10/02 18:53:52 INFO mapred.MapTask: Starting flush of map output
  15/10/02 18:53:52 INFO mapred.MapTask: Spilling map output
  15/10/02 18:53:52 INFO mapred.MapTask: bufstart = 0; bufend = 44; bufvoid = 104857600
  15/10/02 18:53:52 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214380(104857520); length = 17/6553600
  15/10/02 18:53:52 INFO mapred.MapTask: Finished spill 0
  15/10/02 18:53:52 INFO mapred.Task: Task:attempt_local1954603964_0001_m_000000_0 is done. And is in the process of committing
  15/10/02 18:53:53 INFO mapred.LocalJobRunner: map
  15/10/02 18:53:53 INFO mapred.Task: Task 'attempt_local1954603964_0001_m_000000_0' done.
  15/10/02 18:53:53 INFO mapred.LocalJobRunner: Finishing task: attempt_local1954603964_0001_m_000000_0
  15/10/02 18:53:53 INFO mapred.LocalJobRunner: Starting task: attempt_local1954603964_0001_m_000001_0
  15/10/02 18:53:53 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
  15/10/02 18:53:53 INFO mapred.Task:  Using ResourceCalculatorProcessTree : [ ]
  15/10/02 18:53:53 INFO mapred.MapTask: Processing split: hdfs://host61:9000/in/mytest1.txt:0+23
  15/10/02 18:53:53 INFO mapreduce.Job:  map 100% reduce 0%
  15/10/02 18:53:53 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)
  15/10/02 18:53:53 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100
  15/10/02 18:53:53 INFO mapred.MapTask: soft limit at 83886080
  15/10/02 18:53:53 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600
  15/10/02 18:53:53 INFO mapred.MapTask: kvstart = 26214396; length = 6553600

  15/10/02 18:53:53 INFO mapred.MapTask: Map output collector>  15/10/02 18:53:54 INFO mapred.LocalJobRunner:
  15/10/02 18:53:54 INFO mapred.MapTask: Starting flush of map output
  15/10/02 18:53:54 INFO mapred.MapTask: Spilling map output
  15/10/02 18:53:54 INFO mapred.MapTask: bufstart = 0; bufend = 43; bufvoid = 104857600
  15/10/02 18:53:54 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214380(104857520); length = 17/6553600
  15/10/02 18:53:54 INFO mapred.MapTask: Finished spill 0
  15/10/02 18:53:54 INFO mapred.Task: Task:attempt_local1954603964_0001_m_000001_0 is done. And is in the process of committing
  15/10/02 18:53:54 INFO mapreduce.Job:  map 50% reduce 0%
  15/10/02 18:53:54 INFO mapred.LocalJobRunner: map
  15/10/02 18:53:54 INFO mapred.Task: Task 'attempt_local1954603964_0001_m_000001_0' done.
  15/10/02 18:53:54 INFO mapred.LocalJobRunner: Finishing task: attempt_local1954603964_0001_m_000001_0
  15/10/02 18:53:54 INFO mapred.LocalJobRunner: map task executor complete.
  15/10/02 18:53:54 INFO mapred.LocalJobRunner: Waiting for reduce tasks
  15/10/02 18:53:54 INFO mapred.LocalJobRunner: Starting task: attempt_local1954603964_0001_r_000000_0
  15/10/02 18:53:54 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
  15/10/02 18:53:54 INFO mapred.Task:  Using ResourceCalculatorProcessTree : [ ]
  15/10/02 18:53:54 INFO mapred.ReduceTask: Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@5205a129
  15/10/02 18:53:55 INFO reduce.MergeManagerImpl: MergerManager: memoryLimit=363285696, maxSingleShuffleLimit=90821424, mergeThreshold=239768576, ioSortFactor=10, memToMemMergeOutputsThreshold=10
  15/10/02 18:53:55 INFO reduce.EventFetcher: attempt_local1954603964_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
  15/10/02 18:53:55 INFO mapreduce.Job:  map 100% reduce 0%
  15/10/02 18:53:56 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local1954603964_0001_m_000001_0 decomp: 55 len: 59 to MEMORY
  15/10/02 18:53:56 INFO reduce.InMemoryMapOutput: Read 55 bytes from map-output for attempt_local1954603964_0001_m_000001_0

  15/10/02 18:53:56 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of>  15/10/02 18:53:56 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local1954603964_0001_m_000000_0 decomp: 56 len: 60 to MEMORY
  15/10/02 18:53:56 INFO reduce.InMemoryMapOutput: Read 56 bytes from map-output for attempt_local1954603964_0001_m_000000_0

  15/10/02 18:53:56 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of>  15/10/02 18:53:56 INFO reduce.EventFetcher: EventFetcher is interrupted.. Returning
  15/10/02 18:53:56 INFO mapred.LocalJobRunner: 2 / 2 copied.
  15/10/02 18:53:56 INFO reduce.MergeManagerImpl: finalMerge called with 2 in-memory map-outputs and 0 on-disk map-outputs
  15/10/02 18:53:57 INFO mapred.Merger: Merging 2 sorted segments

  15/10/02 18:53:57 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total>  15/10/02 18:53:57 INFO reduce.MergeManagerImpl: Merged 2 segments, 111 bytes to disk to satisfy reduce memory limit
  15/10/02 18:53:57 INFO reduce.MergeManagerImpl: Merging 1 files, 113 bytes from disk
  15/10/02 18:53:57 INFO reduce.MergeManagerImpl: Merging 0 segments, 0 bytes from memory into reduce
  15/10/02 18:53:57 INFO mapred.Merger: Merging 1 sorted segments

  15/10/02 18:53:57 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total>  15/10/02 18:53:57 INFO mapred.LocalJobRunner: 2 / 2 copied.
  15/10/02 18:53:57 INFO Configuration.deprecation: mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
  15/10/02 18:53:59 INFO mapred.Task: Task:attempt_local1954603964_0001_r_000000_0 is done. And is in the process of committing
  15/10/02 18:53:59 INFO mapred.LocalJobRunner: 2 / 2 copied.
  15/10/02 18:53:59 INFO mapred.Task: Task attempt_local1954603964_0001_r_000000_0 is allowed to commit now
  15/10/02 18:53:59 INFO output.FileOutputCommitter: Saved output of task 'attempt_local1954603964_0001_r_000000_0' to hdfs://host61:9000/out/_temporary/0/task_local1954603964_0001_r_000000
  15/10/02 18:53:59 INFO mapred.LocalJobRunner: reduce > reduce
  15/10/02 18:53:59 INFO mapred.Task: Task 'attempt_local1954603964_0001_r_000000_0' done.
  15/10/02 18:53:59 INFO mapred.LocalJobRunner: Finishing task: attempt_local1954603964_0001_r_000000_0
  15/10/02 18:53:59 INFO mapred.LocalJobRunner: reduce task executor complete.
  15/10/02 18:53:59 INFO mapreduce.Job:  map 100% reduce 100%
  15/10/02 18:53:59 INFO mapreduce.Job: Job job_local1954603964_0001 completed successfully
  15/10/02 18:54:00 INFO mapreduce.Job: Counters: 35
  File System Counters
  FILE: Number of bytes read=821850
  FILE: Number of bytes written=1655956
  FILE: Number of read operations=0
  FILE: Number of large read operations=0
  FILE: Number of write operations=0
  HDFS: Number of bytes read=118
  HDFS: Number of bytes written=42
  HDFS: Number of read operations=22
  HDFS: Number of large read operations=0
  HDFS: Number of write operations=5
  Map-Reduce Framework
  Map input records=2
  Map output records=10
  Map output bytes=87
  Map output materialized bytes=119
  Input split bytes=196
  Combine input records=10
  Combine output records=10
  Reduce input groups=6
  Reduce shuffle bytes=119
  Reduce input records=10
  Reduce output records=6
  Spilled Records=20
  Shuffled Maps =2
  Failed Shuffles=0
  Merged Map outputs=2
  GC time elapsed (ms)=352
  Total committed heap usage (bytes)=457912320
  Shuffle Errors
  BAD_ID=0
  CONNECTION=0
  IO_ERROR=0
  WRONG_LENGTH=0
  WRONG_MAP=0
  WRONG_REDUCE=0
  File Input Format Counters
  Bytes Read=47
  File Output Format Counters
  Bytes Written=42
  [hadoop@host61 hadoop]$
  [hadoop@host61 hadoop]$ ./bin/hadoop fs -ls /out
  Found 2 items
  -rw-r--r--   3 hadoop supergroup          0 2015-10-02 18:53 /out/_SUCCESS
  -rw-r--r--   3 hadoop supergroup         42 2015-10-02 18:53 /out/part-r-00000
  [hadoop@host61 hadoop]$ ./bin/hadoop fs -cat /out/_SUCCESS
  [hadoop@host61 hadoop]$ ./bin/hadoop fs -cat /out/part-r-00000
  file2
  first1
  is2
  second1
  the2
  this2
  [hadoop@host61 hadoop]$
  12.至此hadoop的配置部署工作顺利完成;


运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-628233-1-1.html 上篇帖子: hadoop2.7环境的编译安装 下篇帖子: 学习日志---hbase+zookeeper+hadoop
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表