设为首页 收藏本站
查看: 1393|回复: 0

[经验分享] Hadoop MapReduce篇

[复制链接]

尚未签到

发表于 2018-10-30 10:24:08 | 显示全部楼层 |阅读模式
  http://blog.chinaunix.net/uid-12014716-id-4306505.html
  如果联系到hadoop集群的话,其实到现在才真正的明白这个MR。我的理解偏差了好多,下面大概讲讲(口语,不专业),不对的地方还请指正;
  你程序中写的MR函数,运行程序,这里叫做提交作业,Jobtracker接到作业后会分析MR的规则(如果你不特定规则它会按照系统默认的规则),比如需要多少个map,按照什么分map等规划,然后分配具体任务给每个Tasktracker去执行,待每个Tasktracker按照先map后reduce计算完毕后会把reduce结果汇总给Jobtracker,最终Jobtracker把结果返回给客户端;
  这个流程你可以这样理解:
  MR就是需求----Jobtracker分析此需求并制定计划发送任务给Tasktracker(多个)---Tasktracker就是工人接到任务开始干活并报告结果(map和reduce的函数执行是在这里进行的)---Jobtracker最终汇总所有Tasktracker的报告结果输出;
  再拿施工队的例子解释:
  MR就是给工头L(Jobtracker)看的图纸,L(Jobtracker)分析图纸后知道如何建造这个房子了,比如先地基,再柱子等等,然后根据实际情况分任务,地基技术比较简单,那就给A(Tasktracker1)这个工人,柱子适合给B(Tasktracker2)这个工人,分配好后,A和B就开始干活了,待AB都干完了,告诉L,我们做完了。OK,任务完成,L说房子可以交工了,任务完成;
  下面具体是的map和reduce函数都怎么计算数据的,稍稍专业点:
  上一篇也简单提到了Hadoop中的MapReduce(下面都简写为MR)是一种分布式计算模型,起初由Google提出,主要用于搜索领域,解决海量数据的计算问题。MR由两个阶段组成:Map和Reduce,用户只需要实现Map()和Reduce()两个函数,即可实现分布式计算,这两个函数的形参是key、value对,表示函数的输入信息。
  1、MR的执行流程
DSC0000.jpg

  2、MR原理
  MR框架是由一个单独运行在主节点上的JobTracker和运行在每个集群从节点上(Hadoop集群采用主从结构模型Master和Slave)的TaskTracker共同组成,这里顺便提下:JobTracker可以运行于集群中的任意一台计算机上,负责分配和监控TaskTracker的执行,TaskTracker负责执行任务,它必须运行在DataNode上。JobTracker将map任务和reduce任务分发给空闲的TaskTracker,这些任务并行运行,并监控运行情况。
  1、Map任务处理
  读取输入文件内容,对输入文件的每一行,解析成key,value对,按照自己的逻辑,对不同分区的数据,按照Key进行排序、分组,相同key的value放到一个集合中。
  在集群中就是每个节点处理自己的key,value值,最后汇总给Reduce函数去处理;
  2、Reduce任务处理
  对多个map任务的输出,按照不同的分区,通过网络copy到不同的reduce节点,合并排序,最后把reduce的输出保存到文件中。
  形象化的解释MR就是Linux中经常用的命令: cat xxx.txt |grep "abc"  |wc -l  其中grep是Map任务,wc -l是reduce任务;
  最后:MR不是Hadoop特有的,只是在集群中操作MR能体现出性能的优势,多点并发执行,最后综合结果;Map不能做reduce的工作,但reduce可以做map的工作;


运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-628358-1-1.html 上篇帖子: Hadoop 2.6.0 完全分布式部署安装 下篇帖子: 分布式计算框架Hadoop-stonefeelingangel
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表