设为首页 收藏本站
查看: 477|回复: 0

[转载]Windows 2003 VLK算号原理[E文]

[复制链接]

尚未签到

发表于 2015-5-4 10:32:59 | 显示全部楼层 |阅读模式
MSKey Readme
Abstract
Microsoft Windows Server 2003 VLK requires a VLK key to install. Commonly, for illegal users, this key is a leaked key, and thousands of piracy users use the same key to install their Windows. The problem is that the piracy users can use the product now, but not forever, because Microsoft would probably include the leaked key list in the further service packs (e.g. Microsoft prohibited several Windows XP VLK keys in service pack 1). So, it is necessary to install Windows with different keys for different illegal users.
By tracing Windows product key verification program, I successfully extracted the algorithm MS uses (some Public Key Infrastructure), and broke the private key uses to generate product keys.
Validation Process
1. Decode
The following computations are based on this product key:
JCF8T-2MG8G-Q6BBK-MQKGT-X3GBB
The character “-“ does not contain any information, so, the MS product key is composed of 25-digit-character. Microsoft only uses “BCDFGHJKMPQRTVWXY2346789” to encode product key, in order to avoid ambiguous characters (e.g. “I” and “1”, “0” and “O”). The quantity of information that a product key contain is at most . To convert a 25-digit key to binary data, we need to
a. convert “JCF8T2MG8GQ6BBKMQKGTX3GBB“ to “6 1 3 22 ......“, where ‘B’=0, ‘C’=1, ‘D’=2 … we call the array “6 1 3 22…” base24[]
b. compute decoded = , the result is: 00 C5 31 77 E8 4D BE 73 2C 55 47 35 BD 8D 01 00 (little-endian)
c. The decoded result can be divided into 12bit + 31bit + 62bit + 9bit, and we call theses 4 parts 12bit: OS Family, 31bit: Hash, 62bit: Signature, and 9bit: Prefix.

2. Verify
If you want to understand what I am talking about in this section, please refer to some Elliptic Curve Cryptography materials.
Before verifying a product key, we need to compute the 4 parts mentioned above: OS Family, Hash, Signature, and Prefix.

Microsoft Product-key Identification program uses a public key stored in PIDGEN.DLL’s BINK resource, which is an Elliptic Curve Cryptography public key, which is composed of:
p, a, b construct an elliptic curve
G(x,y) represents a point on the curve, and this point is so called “generator”
K(x,y) represents a point on the curve, and this point is the product of integer k and the generator G.

Without knowing the private key k, we cannot produce a valid key, but we can validate a key using public key:{p, a, b, G, K}

1. compute H=SHA-1(5D OS Family,Hash, prefix, 00 00) the total length is 11 byte. H is 160-bit long, and we only need the first 2 words. Right lift H’s second word by 2 bits. E.g. if SHA-1() returns FE DC BA 98 76 54 32 10, H= FE DC BA 98 1D 95 0C 04.
2. compute R(rx,ry)= Signature * (Signature*G + H*K) (mod p)
3. compute SHA-1(79 OS Family, rx, ry) the total input length = 1+2+64*2=131 bytes. And compare Hash and result, and if identical, the key is valid.


Producing A Valid Key!
We assume the private key k is known (sure, Microsoft won’t public this value, so we have to break it by ourselves).
The equation in the product key validation system is as below:

Hash=SHA(Signature*(Signature*G+SHA(Hash)*K) (mod p))

What we need is to calculate a Signature which satisfies the above equation.
1. Randomly choose an integer r, and compute R(rx,ry)=r * G
2. Compute Hash= SHA-1(79 OS Family, rx, ry) the total input length = 1+2+64*2=131 bytes, and we get the first 62bit result.
3. compute H=SHA-1(5D OS Family,Hash, prefix, 00 00) the total length is 11 byte, and we need first 2 words, and right lift H’s second word by 2 bits.
And now, we get an equation as below:

Signature*(Signature*G+H*K) = r * G (mod p)

By replacing K with k * G, we get the next equation:

Signature*(Signature*G+H*k*G) = r * G (mod p)
, where n is the order of point G on the curve

Note: not every number has a square root, so maybe we need to go back to step 1 for several times.
Get Private-key From Public Key
I’ve mentioned that the private key k is not included in the BINK resource, so we need to break it out by ourselves.
In the public key:
K(x,y) = k * G, we only know the generator G, and the product K, but it is hard to get k.
The effective method of getting k from K(x,y) = k * G is Pollard’s Rho (or its variation) method, whose complexity is merely , where n is the order of G. (n is not included in public key resource, so, we need to get n by Schoof’s algorithm)
Because a user cannot suffer a too long product key, the Signature must be short enough to be convenient. And Microsoft chooses 62 bit as the length of signature, hence, n is merely 62-bit long. Therefore, the complexity of computing the private key k is O(2^31).

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-63471-1-1.html 上篇帖子: 给Windows 2003系统文件设置权限 下篇帖子: Linux安装Oracle 11g client 并连接到Windows Server 2003下的OracleDB详记
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表