设为首页 收藏本站
查看: 1118|回复: 0

[经验分享] [大牛翻译系列]Hadoop(8)MapReduce 性能调优:性能测量(Measuring)

[复制链接]
累计签到:7 天
连续签到:1 天
发表于 2015-7-11 09:17:55 | 显示全部楼层 |阅读模式
6.1 测量MapReduce和环境的性能指标
  性能调优的基础系统的性能指标和实验数据。依据这些指标和数据,才能找到系统的性能瓶颈。性能指标和实验数据要通过一系列的工具和过程才能得到。
  这部分里,将介绍Hadoop自带的工具和性能指标。还将捎带介绍性能监控工具。
  

6.1.1 作业统计数据抽取工具
  这一章中介绍的很多技术都需要从Hadoop中抽取作业和任务的性能指标。有以下三种办法抽取这些统计数据:


  • 用JobTracker UI来查看作业和任务的计数器。
  • 用Hadoop CLI(命令行界面)来查看作业和任务计数器。此外,还可以从作业历史信息中获得其他性能指标。
  • 用本书提供的工具来从作业历史中抽取性能指标
  后两种工具的优势在于,既可以看现状信息,也可以看历史信息。好了,现在就开始介绍作业历史信息,以及怎么用Hadoop CLI和本书的工具来从中抽取性能指标。
  
  作业历史信息和CLI(命令行界面)
  每个MapReduce都会生成作业统计数据文件。在文件中有作业和任务的统计信息。查看这些统计信息的最便捷的方法就是使用Hadoop CLI。把这些统计信息抽取到HDFS的output目录中的过程命令如下:
  



$ hadoop job -history output
Hadoop job: job_201112081615_0181
=====================================
Job tracker host name: localhost
Submitted At: 23-Dec-2011 08:55:22
Launched At: 23-Dec-2011 08:55:22 (0sec)
Finished At: 23-Dec-2011 08:55:37 (15sec)
Status: SUCCESS
Counters:
|Group Name |Counter name |Map Value |Reduce Value|Total |
-------------------------------------------------------------------
|FileSystem |FILE_BYTES_READ |0 |961,831 |961,831
|FileSystem |HDFS_BYTES_READ |696,068 |0 |696,068
|FileSystem |FILE_BYTES_WRITTEN |1,071,837 |1,071,519 |2,143,356
|FileSystem |HDFS_BYTES_WRITTEN |0 |784,221 |784,221
...
Analysis
=========
Time taken by best performing map task 2sec
Average time taken by map tasks: 2sec
Worse performing map tasks:
TaskId Timetaken
task_201112081615_0181_m_000001 2sec
...
  
  上述输出信息只是这个命令得到的结果中的一小部分。如果要深入了解,还是亲自执行一下命令,看看全部的输出信息。在上述输出信息中,包含任务任务执行时间的平均值和最差值。通过这些信息,可以很快了解全体性能指标的大致状况。那么,作业的历史信息文件在哪呢?图6.1说明了它的位置:
  
DSC0000.png
  
  作业历史信息文件的后缀名是jar。尽管很迷惑人,但它实际上是文本文件,由JobHistory类整理而成。如果有兴趣,可以用JobHistory类来对这个jar文件作逆向工程,生成一个java形式的文件。这里可以只用Hadoop CLI来从HDFS ouput目录和NameNode log目录中抽取作业的统计信息。其实,本书提供的工具也可以完成这些工作。
  

6.1.2 监控
  监控正在运行的MapReduce作业的CPU,内存,网络等各项性能指标无疑是重要的。了解这些指标可以避免硬件系统的部分闲置和过载。如果硬件系统过载了,那么由此而来的资源竞争,CPU上下文切换,内存页交换等就会浪费大量时间。如果硬件系统部分闲置了,那就是浪费资源。
  要对系统的运行状态进行自动监控,然后才能够得到硬件系统的历史性能信息,并在特定的情况下发出警告信息。现在有很多这方面的工具:


  • Linux内置的系统活动收集器和报告工具
  • Nagios
  • Ganglia。Ganglia是监控集群的开源项目。它提供了富客户端和图表工具。并能够从Hadoop中获取统计信息。(图6.2)
  
DSC0001.png
  
  

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-85391-1-1.html 上篇帖子: Hadoop MapReduce 原理 下篇帖子: Hadoop之添加新的datanode
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表