设为首页 收藏本站
查看: 971|回复: 0

[经验分享] hadoop中的DistributedCache 2

[复制链接]

尚未签到

发表于 2015-7-11 09:54:11 | 显示全部楼层 |阅读模式
  WordCount.javaHadoop的分布式缓存机制使得一个job的所有map或reduce可以访问同一份文件。在任务提交后,hadoop将由-files和-archive选项指定的文件复制到HDFS上(JobTracker的文件系统)。在任务运行前,TaskTracker从JobTracker文件系统复制文件到本地磁盘作为缓存,这样任务就可以访问这些文件。对于job来说,它并不关心文件是从哪儿来的。在使用DistributedCache时,对于本地化文件的访问,通常使用Symbolic Link来访问,这样更方便。通过 URI hdfs://namenode/test/input/file1#myfile 指定的文件在当前工作目录中被符号链接为myfile。这样job里面可直接通过myfile来访问文件,而不用关心该文件在本地的具体路径。
  示例如下:

  
  


package org.myorg;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.util.StringTokenizer;
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;
public class WordCount
{
    public static void UseDistributedCacheBySymbolicLink() throws Exception
    {
        FileReader reader = new FileReader("god.txt");
        BufferedReader br = new BufferedReader(reader);
        String s1 = null;
        while ((s1 = br.readLine()) != null)
        {
            System.out.println(s1);
        }
        br.close();
        reader.close();
    }
   
    public static class Map extends MapReduceBase implements Mapper
    {
        public void configure(JobConf job)
        {
            System.out.println("Now, use the distributed cache and syslink");
            try {
                UseDistributedCacheBySymbolicLink();
            }
            catch (Exception e)
            {
                e.printStackTrace();
            }
        }
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();
        public void map(LongWritable key, Text value, OutputCollector output, Reporter reporter) throws IOException
        {
            String line = value.toString();
            StringTokenizer tokenizer = new StringTokenizer(line);
            while (tokenizer.hasMoreTokens())
            {
                word.set(tokenizer.nextToken());
                output.collect(word, one);
            }
        }
    }
    public static class Reduce extends MapReduceBase implements Reducer
    {
        public void reduce(Text key, Iterator values, OutputCollector output, Reporter reporter) throws IOException
        {
            int sum = 0;
            while (values.hasNext())
            {
                sum += values.next().get();
            }
            output.collect(key, new IntWritable(sum));
        }
    }
    public static void main(String[] args) throws Exception
    {
        JobConf conf = new JobConf(WordCount.class);
        conf.setJobName("wordcount");
        conf.setOutputKeyClass(Text.class);
        conf.setOutputValueClass(IntWritable.class);
        conf.setMapperClass(Map.class);
        conf.setCombinerClass(Reduce.class);
        conf.setReducerClass(Reduce.class);
        conf.setInputFormat(TextInputFormat.class);
        conf.setOutputFormat(TextOutputFormat.class);
        FileInputFormat.setInputPaths(conf, new Path(args[0]));
        FileOutputFormat.setOutputPath(conf, new Path(args[1]));
        DistributedCache.createSymlink(conf);
        String path = "/xuxm_dev_test_61_pic/in/WordCount.java";
        Path filePath = new Path(path);
        String uriWithLink = filePath.toUri().toString() + "#" + "god.txt";
        DistributedCache.addCacheFile(new URI(uriWithLink), conf);
        JobClient.runJob(conf);
    }  }
  

   执行方法参考http://hadoop.apache.org/common/docs/r0.19.2/cn/mapred_tutorial.html#%E4%BE%8B%E5%AD%90%EF%BC%9AWordCount+v1.0  
    程序运行的结果是在jobtracker中的task的log可以看到打印后的/xuxm_dev_test_61_pic/in/WordCount.java文件的内容。
  
  如果程序中要用到很多小文件,那么使用Symbolic Link将非常方便。
       请在执行前先将WordCount.java文件放到指定位置,否则就会找不到文件

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-85425-1-1.html 上篇帖子: hadoop mapreduce 解决 top K问题 下篇帖子: hadoop源代码组织结构与阅读技巧
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表