设为首页 收藏本站
查看: 1929|回复: 0

[经验分享] Hadoop学习笔记(七):使用distcp并行拷贝大数据文件

[复制链接]
累计签到:1 天
连续签到:1 天
发表于 2015-7-12 07:58:27 | 显示全部楼层 |阅读模式
  以前我们介绍的访问HDFS的方法都是单线程的,Hadoop中有一个工具可以让我们并行的拷贝大量数据文件,这个工具就是distcp。
  distcp的典型应用就是在两个HDFS集群中拷贝文件,如果两个集群使用的Hadoop版本相同,可以使用hdfs标识符:
    % hadoop distcp hdfs://namenode1/foo hdfs://namenode2/bar
  这条命令会把第一个集群(namenode为命令中指定的namenode1)中的/foo目录拷贝到第二个集群中的/bar目录下,于是在第二个集群中就得到了/bar/foo这样的目录结构,我们也可以指定多个拷贝源,但拷贝目的地只有一个。要注意的是,指定拷贝路径的时候要使用绝对路径。 
  distcp命令是以mapreduce作业的形式实现的,只不过此作业没有reduce任务。每一个文件是由一个map任务来拷贝的,distcp尽量把大小之和相同的各个文件导入到同一个map任务中。这样可以每个map任务拷贝的数据量大致相同。
  Map任务的个数是按如下方式决定的:
  1)考虑到创建每个map任务的开销,每个map任务至少应处理256MB大小的数据(如果总输入文件的大小小于256MB,则把这些输入数据全部交给一个map任务执行)。例如,一个1GB大小的输入数据会被分配四个map任务来拷贝。
  2)如果待拷贝的数据实在很大,这时候就不能只按每个map任务256MB输入数据的标准来划分了,因为这样可能需要创建很多map任务。这是可以按每个datanode20个map任务来划分,例如如果有1000GB的输入数据和100个节点,这是就会启动100*20=2000个map任务来拷贝数据,每个map任务拷贝512MB数据。同时我们也可通过-m选项指定要使用的map数,例如-m 1000就会只启动1000个map任务,每个map任务拷贝1GB数据。
  默认情况下,如果在拷贝的目的地同名文件已经存在,则会默认跳过这些文件。可以通过-overwrite选项指定覆盖掉同名文件,或者通过-update选项来更新同名文件。
  关于distcp的更多用法,可以不加参数运行“hadoop distcp”命令来查看其用法。
  如果两个集群的Hadoop版本不一致就不能使用hdfs标识符来拷贝文件了,因为两者的RPC系统是不兼容的。这是可以使用只读的基于HTTP的HFTP文件系统来读取源数据,如下所示(注意此命令是在第二个集群上执行的,以确保rpc版本兼容):
    % hadoop distcp hftp://namenode1:50070/foo hdfs://namenode2/bar
  注意在上述命令中需要制定namenode1的网络端口,它是由dfs.http.address指定的,默认为50070.
  另一种可选的方法是使用webhdfs协议(替换hftp协议),这样在拷贝的源和目的地都可以使用http而不用担心版本不兼容的问题:
    % hadoop distcp webhdfs://namenode1:50070/foo webhdfs://namenode2:50070/bar
  我们还可以使用HDFS HTTP代理作为拷贝的源和目的地,这样可以设置防火墙以及进行带宽控制。
  转载请注明出处:http://www.iyunv.com/beanmoon/archive/2012/12/18/2823581.html
  
  

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-85618-1-1.html 上篇帖子: hadoop遇到的问题 下篇帖子: Hadoop on Mac with IntelliJ IDEA
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表