//反序列化,从流中的二进制转换成IntPair
public void readFields(DataInput in) throws IOException
//序列化,将IntPair转化成使用流传送的二进制
public void write(DataOutput out)
//key的比较
public int compareTo(IntPair o)
//另外新定义的类应该重写的两个方法
//The hashCode() method is used by the HashPartitioner (the default partitioner in MapReduce)
public int hashCode()
public boolean equals(Object right)
(2)由于key是自定义的,所以还需要自定义一下类:
(2.1)分区函数类。这是key的第一次比较。
public static class FirstPartitioner extends Partitioner
在job中使用setPartitionerClasss设置Partitioner。
(2.2)key比较函数类。这是key的第二次比较。这是一个比较器,需要继承WritableComparator(也就是实现RawComprator接口)。
(这个就是前面说的第二种方法,但是在第三部分的代码中并没有实现此函数,而是直接使用compareTo方法进行比较,所以也就不许下面一行的设置)
在job中使用setSortComparatorClass设置key比较函数类。
public static class KeyComparator extends WritableComparator
2.3)分组函数类。在reduce阶段,构造一个key对应的value迭代器的时候,只要first相同就属于同一个组,放在一个value迭代器。这是一个比较器,需要继承WritableComparator。
public static class GroupingComparator extends WritableComparator
分组函数类也必须有一个构造函数,并且重载 public int compare(WritableComparable w1, WritableComparable w2)
分组函数类的另一种方法是实现接口RawComparator。
在job中使用setGroupingComparatorClass设置分组函数类。
另外注意的是,如果reduce的输入与输出不是同一种类型,则不要定义Combiner也使用reduce,因为Combiner的输出是reduce的输入。除非重新定义一个Combiner。