设为首页 收藏本站
查看: 1058|回复: 0

[经验分享] hadoop的mapreduce作业中经常出现的Out Of Memory解决方案

[复制链接]

尚未签到

发表于 2016-12-12 09:30:09 | 显示全部楼层 |阅读模式
常常被一些用户问到,说“为什么我的mapreduce作业总是运行到某个阶段就报出如下错误,然后失败呢?以前同一个作业没出现过的呀?”
10/01/10 12:48:01 INFO mapred.JobClient: Task Id : attempt_201001061331_0002_m_000027_0, Status : FAILED
java.lang.OutOfMemoryError: Java heap space
        at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.<init>(MapTask.java:498)
        at org.apache.hadoop.mapred.MapTask.run(MapTask.java:305)
        at org.apache.hadoop.mapred.Child.main(Child.java:158)

其实这样的错误有时候并不是程序逻辑的问题(当然有可能是由于程序写的不够高效,产生的内存消耗不合理而导致),而是由于同样的作业,在数据量和数据本身发生不同时就会占据不同数量的内存空间。由于hadoop的mapreduce作业的运行机制是:在jobtracker接到客户端来的job提交后,将许多的task分配到集群中各个tasktracker上进行分块的计算,而根据代码中的逻辑可以看出,其实是在tasktracker上启了一个java进程进行运算,进程中有特定的端口和网络机制来保持map 和reduce之间的数据传输,所以,这些OOM的错误,其实就是这些java进程中报出了OOM的错误。
     知道了原因以后就好办了,hadoop的mapreduce作业启动的时候,都会读取jobConf中的配置(hadoop-site.xml),只要在该配置文件中将每个task的jvm进程中的-Xmx所配置的java进程的max heap size加大,就能解决这样的问题:
<property>
  <name>mapred.child.java.opts</name>
  <value>-Xmx1024m</value>
</property>

PS:该选项默认是200M

新版本应该是在conf/hadoop-env.sh文件中修改。默认为1000M

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-313070-1-1.html 上篇帖子: hadoop中使用hprof工具进行性能分析 下篇帖子: Eclipse插件调试Hadoop程序报/work/tmp does not exist.
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表