设为首页 收藏本站
查看: 1396|回复: 0

[经验分享] 别以为真懂Openstack: 虚拟机创建的50个步骤和100个知识点(4)

[复制链接]

尚未签到

发表于 2015-4-11 15:53:28 | 显示全部楼层 |阅读模式
六、Libvirt
DSC0000.png
  对于Libvirt,在启动虚拟机之前,首先需要define虚拟机,是一个XML格式的文件
  列出所有的Instance
  # virsh list
Id    Name                           State
----------------------------------------------------
10    instance-00000006              running
  # virsh dumpxml instance-00000006

  instance-00000006
  73b896bb-7c7d-447e-ab6a-c4089532f003
  2097152
  2097152
  1
  
    /machine
  
  
   
      OpenStack Foundation
      OpenStack Nova
      2014.1.1
      80590690-87d2-e311-b1b0-a0481cabdfb4
      73b896bb-7c7d-447e-ab6a-c4089532f003
   
  
  
    hvm
   
   
  
  
   
   
  
  
   
  
  
   
   
   
  
  destroy
  restart
  destroy
  
    /usr/bin/kvm-spice
   
      
      
      
      
      
   
   
      
      
   
   
      
   
   
      
      
      
      
      
      
   
   
      
      
      
   
   
      
      
      
   
   
      
      
      
   
   
      
   
   
   
   
      
   
   
      
      
      
   
   
      
      
   
  
  
    libvirt-73b896bb-7c7d-447e-ab6a-c4089532f003
    libvirt-73b896bb-7c7d-447e-ab6a-c4089532f003
  

  我们发现里面定义了虚拟化类型kvm, vcpu, memory, disk, pty等,需要注意的是network,是一个tap device,attach到了qbr上。
  虚拟化有很多种类型,参考下面的文章
  虚拟化技术
  [转]Virtualization Basics
  当然虚拟机启动了之后,通过进程的查看,便能看到复杂无比的参数
  # ps aux | grep instance-00000006
libvirt+ 22200  6.3  0.4 5464532 282888 ?      Sl   09:51   0:09 qemu-system-x86_64 -enable-kvm -name instance-00000006 -S -machine pc-i440fx-trusty,accel=kvm,usb=off -cpu SandyBridge,+erms,+smep,+fsgsbase,+pdpe1gb,+rdrand,+f16c,+osxsave,+dca,+pcid,+pdcm,+xtpr,+tm2,+est,+smx,+vmx,+ds_cpl,+monitor,+dtes64,+pbe,+tm,+ht,+ss,+acpi,+ds,+vme -m 2048 -realtime mlock=off -smp 1,sockets=1,cores=1,threads=1 -uuid 73b896bb-7c7d-447e-ab6a-c4089532f003 -smbios type=1,manufacturer=OpenStack Foundation,product=OpenStack Nova,version=2014.1.1,serial=80590690-87d2-e311-b1b0-a0481cabdfb4,uuid=73b896bb-7c7d-447e-ab6a-c4089532f003 -no-user-config -nodefaults -chardev socket,id=charmonitor,path=/var/lib/libvirt/qemu/instance-00000006.monitor,server,nowait -mon chardev=charmonitor,id=monitor,mode=control -rtc base=utc,driftfix=slew -global kvm-pit.lost_tick_policy=discard -no-hpet -no-shutdown -boot strict=on -device piix3-usb-uhci,id=usb,bus=pci.0,addr=0x1.0x2 -drive file=/var/lib/nova/instances/73b896bb-7c7d-447e-ab6a-c4089532f003/disk,if=none,id=drive-virtio-disk0,format=qcow2,cache=none -device virtio-blk-pci,scsi=off,bus=pci.0,addr=0x4,drive=drive-virtio-disk0,id=virtio-disk0,bootindex=1 -netdev tap,fd=24,id=hostnet0,vhost=on,vhostfd=25 -device virtio-net-pci,netdev=hostnet0,id=net0,mac=fa:16:3e:ae:f4:17,bus=pci.0,addr=0x3 -chardev file,id=charserial0,path=/var/lib/nova/instances/73b896bb-7c7d-447e-ab6a-c4089532f003/console.log -device isa-serial,chardev=charserial0,id=serial0 -chardev pty,id=charserial1 -device isa-serial,chardev=charserial1,id=serial1 -device usb-tablet,id=input0 -vnc 0.0.0.0:0 -k en-us -device cirrus-vga,id=video0,bus=pci.0,addr=0x2 -device virtio-balloon-pci,id=balloon0,bus=pci.0,addr=0x5
  然而谁能解释这些参数是干什么的?
  请仔细阅读下面两篇文章

  QEMU KVM libvirt 手册(3) - Storage Media
  QEMU KVM Libvirt手册(7): 硬件虚拟化
  QEMU KVM Libvirt手册(8): 半虚拟化设备virtio
  machine参数是总线Architecture,通过qemu-system-x86_64 --machine ?查看,default就是参数中的值。
  accel=kvm说明虚拟化使用的是kvm
  cpu表示处理器的参数以及处理器的一些flags,可以使用命令qemu-system-x86_64 --cpu ?查看
  smp是对称多处理器,
  -smp 1,sockets=1,cores=1,threads=1
  qemu仿真了一个具有1个vcpu,一个socket,一个core,一个threads的处理器。
  socket, core, threads是什么概念呢
  (1)socket就是主板上插cpu的槽的数目,也即管理员说的”路“
(2)core就是我们平时说的”核“,即双核,4核等
(3)thread就是每个core的硬件线程数,即超线程
  具体例子,某个服务器是:2路4核超线程(一般默认为2个线程),那么,通过cat /proc/cpuinfo看到的是2*4*2=16个processor,很多人也习惯成为16核了!
  SMBIOS全称System Management BIOS,用于表示x86 architectures的硬件信息,包含BIOS,主板的信息,这里都是openstack,是假的了
  -chardev socket,id=charmonitor,path=/var/lib/libvirt/qemu/instance-00000006.monitor,server,nowait
  -mon chardev=charmonitor,id=monitor,mode=control
  这是一对,用unix socket方式暴露monitor,从而可以通过virsh操作monitor
  rtc是指system clock, -no-hpet是指不用更精准的时间。
  -device piix3-usb-uhci,id=usb,bus=pci.0,addr=0x1.0x2 是USB,连接到PCI总线0上,是device 0, function 1
  下面两个是一对
  -drive file=/var/lib/nova/instances/73b896bb-7c7d-447e-ab6a-c4089532f003/disk,if=none,id=drive-virtio-disk0,format=qcow2,cache=none
  -device virtio-blk-pci,scsi=off,bus=pci.0,addr=0x4,drive=drive-virtio-disk0,id=virtio-disk0,bootindex=1
  表示硬盘,drive指向文件,device使用virtio,连到pci的总线0上,是device 4, funtion 0
  下面两个是一对
  -netdev tap,fd=24,id=hostnet0,vhost=on,vhostfd=25
  -device virtio-net-pci,netdev=hostnet0,id=net0,mac=fa:16:3e:ae:f4:17,bus=pci.0,addr=0x3
  表示网卡,用tap device,device使用virtio,连接到pci的总线0上,是device 3,function 0
  下面两个是一对
  -chardev file,id=charserial0,path=/var/lib/nova/instances/73b896bb-7c7d-447e-ab6a-c4089532f003/console.log
  -device isa-serial,chardev=charserial0,id=serial0
  是chardev,将log重定向到console.log
  下面两个是一对,是pty
  -chardev pty,id=charserial1
  -device isa-serial,chardev=charserial1,id=serial1
  这是显卡
  -device cirrus-vga,id=video0,bus=pci.0,addr=0x2
  这是内存
  -device virtio-balloon-pci,id=balloon0,bus=pci.0,addr=0x5
  都连接到pci总线上,通过命令virsh # qemu-monitor-command instance-00000024 --hmp "info pci"可以查看pci总线上的所有设备。
  这里面有很多半虚拟化的设备,从而可以提高性能
  [转] KVM VirtIO paravirtualized drivers: why they matter
  Virtio: An I/O virtualization framework for Linux
  QEMU KVM Libvirt手册(8): 半虚拟化设备virtio
  [转]Virtio balloon
  除了硬件的虚拟化和半虚拟化,对于网络,qemu和kvm本身也有自己的机制
  
  QEMU KVM Libvirt手册(9): network
  QEMU Networking
  Virtual Networking
  同时对于存储,也有自己的机制
  QEMU KVM Libvirt手册(11): Managing Storage
  这一节最后要说的,就是libvirt对虚拟机的管理
  有一个强大的工具叫monitor,可以进行多种操作,相当于机器的管理界面,也可以通过virsh进行操作,参考文章QEMU KVM libvirt手册(2)
  最重要的命令行工具就是virsh了,参考QEMU KVM Libvirt手册(10):Managing Virtual Machines with libvirt
  
七、Neutron
DSC0001.png
  这一步,就是讲instance连接到已经创建好的网络设备上
步骤33:创建qbr网桥
步骤34:创建veth pair,qvo和qvb
步骤35:将qvb添加到qbr上
步骤36:将qvo添加到br-int上
  看起来复杂而清晰的连接过程,为什么要这样,需要理解neutron中的网络设备架构
  其实很早就有人画出来了,如下面的图
  在network Node上:
DSC0002.png
  在Compute Node上:
DSC0003.png
  当看到这里,很多人脑袋就大了,openstack为什么要创建这么多的虚拟网卡,他们之间什么关系,这些dl_vlan, mod_vlan_vid都是什么东东啊?
  请参考文章neutron的基本原理
  neutron的不同的private network之间是隔离的,租户隔离技术三种常用的VLAN, GRE,VXLAN,各有优缺点
  VLAN原理
  A virtual LAN (VLAN) is a group of networking devices in the same broadcast domain.
DSC0004.png
  有两种VLAN
  Static VLAN/Port-based VLAN

  • manually assign a port on a switch to a VLAN using an Interface Subconfiguration mode command.
  Dynamic VLANs

  • the switch automatically assigns the port to a VLAN using information from the user device, such as its MAC address, IP address, or even directory information (a user or group name, for instance).
  • The switch then consults a policy server, called a VLAN membership policy server (VMPS), which contains a mapping of device information to VLANs.
  有两种connection
  Access-Link Connections

  • a device that has a standardized Ethernet NIC that understands only standardized Ethernet frames
  • Access-link connections can only be associated with a single VLAN.
  Trunk Connections

  • trunk connections are capable of carrying traffic for multiple VLANs.
DSC0005.png
  IEEE’s 802.1Q
DSC0006.png
  优点
  Increased performance

  • reducing collisions
  • limiting broadcast traffic
  • Less need to be routed
  Improved manageability

  • Manage logical groups
  Increased security options

  • packets only to other members of the VLAN.
  缺点
  limited number of VLANs 4000 -> 1000
  number of MAC addresses supported in switches
  GRE的原理
  Generic Routing Encapsulation (GRE) is a tunneling protocol that can encapsulate a wide variety of network layer protocols inside virtual point-to-point links over an Internet Protocol internetwork.
DSC0007.png
  Header
DSC0008.png
  优点
  Resolve the VLAN and MAC limitations by encapsulating communications within p2p 'tunnels' which hid the guest MAC information exposing only the MAC addresses of host systems.
  L2 to L3, after leaving the encapsulated L2 virtual network, the traffic is forwarded to a gateway which can de-encapsulate traffic and route it out onto the leveraged unencapsulated network.
  
  缺点
  Point to point tunnel
  Pool extensibility
  Few switches can understand GRE Header, so load distribution and ACL (both depends on IPs and ports) can not be applied
DSC0009.png
  VXLAN原理
  Allow for virtual machines to live in two disparate networks yet still operate as if they were attached to the same L2.
  Components:

  • Multicast support, IGMP and PIM
  • VXLAN Network Identifier (VNI): 24-bit segment ID
  • VXLAN Gateway
  • VXLAN Tunnel End Point (VTEP)
  • VXLAN Segment/VXLAN Overlay Network
DSC00010.png
DSC00011.png
  
  
  

  • When VM1 wants to send a packet to VM2, it needs the MAC address of VM2 this is the process that is followed:
  • VM1 sends a ARP packet requesting the MAC address associated with 192.168.0.101
  • This ARP is encapsulated by VTEP1 into a multicast packet to the multicast group associated with VNI 864
  • All VTEPs see the multicast packet and add the association of VTEP1 and VM1 to its VXLAN tables
  • VTEP2 receives the multicast packet decapsulates it, and sends the original broadcast on portgroups associated with VNI 864
  • VM2 sees the ARP packet and responds with its MAC address
  • VTEP2 encapsulates the response as a unicast IP packet and sends it back to VTEP1 using IP routing
  • VTEP1 decapsulates the packet and passes it on to VM1
  • At this point VM1 knows the MAC address of VM2 and can send directed packets to it as shown in in Figure 2: VM to VM communication:
  • VM1 sends the IP packet to VM2 from IP address 192.168.0.100 to 192.168.0.101
  • VTEP1 takes the packet and encapsulates it by adding the following headers:
  • VXLAN header with VNI=864
  • Standard UDP header and sets the UDP checksum to 0×0000, and the destination port being the VXLAN IANA designated port.  Cisco N1KV is currently using port ID 8472.
  • Standard IP header with the Destination being VTEP2’s IP address and Protocol 0×011 for the UDP packet used for delivery
  • Standard MAC header with the MAC address of the next hop.  In this case it is the router Interface with MAC address 00:10:11:FE:D8:D2 which will use IP routing to send it to the destination
  • VTEP2 receives the packet as it has it’s MAC address as the destination.  The packet is decapsulated and found to be a VXLAN packet due to the UDP destination port.  At this point the VTEP will look up the associated portgroups for VNI 864 found in the VXLAN header.  It will then verify that the target, VM2 in this case, is allowed to receive frames for VNI 864 due to it’s portgroup membership and pass the packet on if the verification passes.
  • VM2 receives the packet and deals with it like any other IP packet.
  优点
  Address 4K VLAN Limitation
  Solves mac address scaling issues
  Better scalability and failover
  缺点
  VXLAN expects multicast to be enabled on physical networks, and it does MAC flooding to learn end points.
  But IP multicast is usually disabled
  Need MAC preprovisioning via a SDN Controller
  Software VTEPs may have performance issue
  在Openstack中,neutron的很多网络功能都是由openvswitch实现的,因而本人专门研究了一下openvswitch,参考下面的文章

  OpenFlow学习笔记
  Openvswitch手册(1)
  Openvswitch手册(2)
  Openvswitch手册(3)
  Openvswitch手册(4)
  [转]Comparing sFlow and NetFlow in a vSwitch
  [转]Rapidly detecting large flows, sFlow vs. NetFlow/IPFIX
  Openvswitch手册(5)
  Openvswitch手册(6)
  Openvswitch手册(7)
  
  Openvswitch手册(8)
  Openvswitch手册(9)
  Openvswtich 学习笔记
  对于网络的管理,有很多好的工具可以使用

  [转] iptables
  HTB Linux queuing discipline manual - user guide笔记
  iproute2学习笔记
  tcpdump
  [转]Linux操作系统tcpdump抓包分析详解
  [转] IPTables for KVM Host
  [转] Firewall and network filtering in libvirt
  [转] XEN, KVM, Libvirt and IPTables
  http://tldp.org/HOWTO/Traffic-Control-HOWTO/
  http://rlworkman.net/howtos/iptables/iptables-tutorial.html

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-56066-1-1.html 上篇帖子: 探索 OpenStack 之(13):研究 Keystone 下篇帖子: 怎样修改 Openstack Horizon(Dashboard)的显示界面 (二)
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表