设为首页 收藏本站
查看: 962|回复: 0

[经验分享] Python图像处理库(2)

[复制链接]

尚未签到

发表于 2015-12-1 09:34:49 | 显示全部楼层 |阅读模式
1.4 SciPy

SciPy(http://scipy.org/) 是建立在 NumPy 基础上,用于数值运算的开源工具包。SciPy 提供很多高效的操作,可以实现数值积分、优化、统计、信号处理,以及对我们来说最重要的图像处理功能。接下来,本节会介绍 SciPy 中大量有用的模块。SciPy 是个开源工具包,可以从http://scipy.org/Download 下载。

1.4.1 图像模糊

图像的高斯模糊是非常经典的图像卷积例子。本质上,图像模糊就是将(灰度)图像 I 和一个高斯核进行卷积操作:
Iσ = I*Gσ

其中 * 表示卷积操作;Gσ 是标准差为 σ 的二维高斯核,定义为 :
DSC0000.png
图 1-9:使用 scipy.ndimage.filters 模块进行高斯模糊:(a)原始灰度图像;(b)使用 σ=2 的高斯滤波器;(c)使用 σ=5 的高斯滤波器;(d)使用 σ=10 的高斯滤波器

1.4.2 图像导数

整本书中可以看到,在很多应用中图像强度的变化情况是非常重要的信息。强度的变化可以用灰度图像 I(对于彩色图像,通常对每个颜色通道分别计算导数)的 xy 方向导数 IxIy 进行描述。
图像的梯度向量为∇I = [Ix, Iy]T。梯度有两个重要的属性,一是梯度的大小
DSC0001.png
图 1-10:使用 Sobel 导数滤波器计算导数图像:(a)原始灰度图像;(b)x 导数图像;(c)y导数图像;(d)梯度大小图像
上述计算图像导数的方法有一些缺陷:在该方法中,滤波器的尺度需要随着图像分辨率的变化而变化。为了在图像噪声方面更稳健,以及在任意尺度上计算导数,我们可以使用高斯导数滤波器:
Ix=I*GσxIy=I*Gσy

其中,GσxGσy 表示 Gσxy 方向上的导数,Gσ 为标准差为 σ 的高斯函数。
我们之前用于模糊的 filters.gaussian_filter() 函数可以接受额外的参数,用来计算高斯导数。可以简单地按照下面的方式来处理:

sigma = 5 # 标准差
imx = zeros(im.shape)
filters.gaussian_filter(im, (sigma,sigma), (0,1), imx)
imy = zeros(im.shape)
filters.gaussian_filter(im, (sigma,sigma), (1,0), imy)


该函数的第三个参数指定对每个方向计算哪种类型的导数,第二个参数为使用的标准差。你可以查看相应文档了解详情。图 1-11 显示了不同尺度下的导数图像和梯度大小。你可以和图 1-9 中做相同尺度模糊的图像做比较。
DSC0002.png
图 1-11:使用高斯导数计算图像导数:x 导数图像(上),y 导数图像(中),以及梯度大小图像(下);(a)为原始灰度图像,(b)为使用 σ=2 的高斯导数滤波器处理后的图像,(c)为使 用 σ=5 的高斯导数滤波器处理后的图像,(d)为使用 σ=10 的高斯导数滤波器处理后的图像

1.4.3 形态学:对象计数

形态学(或数学形态学)是度量和分析基本形状的图像处理方法的基本框架与集合。形态学通常用于处理二值图像,但是也能够用于灰度图像。二值图像是指图像的每个像素只能取两个值,通常是 0 和 1。二值图像通常是,在计算物体的数目,或者度量其大小时,对一幅图像进行阈值化后的结果。你可以从 http://en.wikipedia.org/wiki/Mathematical_morphology 大体了解形态学及其处理图像的方式。
scipy.ndimage 中的 morphology 模块可以实现形态学操作。你可以使用 scipy.ndimage 中的measurements 模块来实现二值图像的计数和度量功能。下面通过一个简单的例子介绍如何使用它们。
考虑在图 1-12a3 里的二值图像,计算该图像中的对象个数可以通过下面的脚本实现:
3这个图像实际上是图像“分割”后的结果。如果你想知道该图像是如何创建的,可以查看 9.3 节。

from scipy.ndimage import measurements,morphology
# 载入图像,然后使用阈值化操作,以保证处理的图像为二值图像
im = array(Image.open('houses.png').convert('L'))
im = 1*(im<</span>128)
labels, nbr_objects = measurements.label(im)
print "Number of objects:", nbr_objects


上面的脚本首先载入该图像,通过阈值化方式来确保该图像是二值图像。通过和 1 相乘,脚本将布尔数组转换成二进制表示。然后,我们使用 label() 函数寻找单个的物体,并且按照它们属于哪个对象将整数标签给像素赋值。图 1-12b 是 labels 数组的图像。图像的灰度值表示对象的标签。可以看到,在一些对象之间有一些小的连接。进行二进制开(binary open)操作,我们可以将其移除:

# 形态学开操作更好地分离各个对象
im_open = morphology.binary_opening(im,ones((9,5)),iterations=2)
labels_open, nbr_objects_open = measurements.label(im_open)
print "Number of objects:", nbr_objects_open


binary_opening() 函数的第二个参数指定一个数组结构元素。该数组表示以一个像素为中心时,使用哪些相邻像素。在这种情况下,我们在 y 方向上使用 9 个像素(上面 4 个像素、像素本身、下面 4 个像素),在 x 方向上使用 5 个像素。你可以指定任意数组为结构元素,数组中的非零元素决定使用哪些相邻像素。参数 iterations 决定执行该操作的次数。你可以尝试使用不同的迭代次数 iterations 值,看一下对象的数目如何变化。你可以在图 1-12c 与图 1-12d 中查看经过开操作后的图像,以及相应的标签图像。正如你想象的一样,binary_closing() 函数实现相反的操作。我们将该函数和在 morphology 和 measurements 模块中的其他函数的用法留作练习。你可以从 scipy.ndimage 模块文档 http://docs.scipy.org/doc/scipy/reference/ndimage.html 中了解关于这些函数的更多知识。
DSC0003.png
图 1-12:形态学示例。使用二值开操作将对象分开,然后计算物体的数目:(a)为原始二值图像;(b)为对应原始图像的标签图像,其中灰度值表示物体的标签;(c)为使用开操作后的二值图像;(d)为开操作后图像的标签图像

1.4.4 一些有用的SciPy模块

SciPy 中包含一些用于输入和输出的实用模块。下面介绍其中两个模块:io 和 misc。


  •   读写.mat文件
      如果你有一些数据,或者在网上下载到一些有趣的数据集,这些数据以 Matlab 的 .mat 文件格式存储,那么可以使用 scipy.io 模块进行读取。

    data = scipy.io.loadmat('test.mat')


      上面代码中,data 对象包含一个字典,字典中的键对应于保存在原始 .mat 文件中的变量名。由于这些变量是数组格式的,因此可以很方便地保存到 .mat 文件中。你仅需创建一个字典(其中要包含你想要保存的所有变量),然后使用 savemat() 函数:

    data = {}
    data['x'] = x
    scipy.io.savemat('test.mat',data)


      因为上面的脚本保存的是数组 x,所以当读入到 Matlab 中时,变量的名字仍为 x。关于scipy.io 模块的更多内容,请参见在线文档http://docs.scipy.org/doc/scipy/reference/io.html。

  •   以图像形式保存数组
      因为我们需要对图像进行操作,并且需要使用数组对象来做运算,所以将数组直接保存为图像文件 4 非常有用。本书中的很多图像都是这样的创建的。
      imsave() 函数可以从 scipy.misc 模块中载入。要将数组 im 保存到文件中,可以使用下面的命令:

    from scipy.misc import imsave
    imsave('test.jpg',im)


      scipy.misc 模块同样包含了著名的 Lena 测试图像:

    lena = scipy.misc.lena()


      该脚本返回一个 512×512 的灰度图像数组。

  4所有 Pylab 图均可保存为多种图像格式,方法是点击图像窗口中的“保存”按钮。

1.5 高级示例:图像去噪

我们通过一个非常实用的例子——图像的去噪——来结束本章。图像去噪是在去除图像噪声的同时,尽可能地保留图像细节和结构的处理技术。我们这里使用 ROF(Rudin-Osher-Fatemi)去噪模型。该模型最早出现在文献 [28] 中。图像去噪对于很多应用来说都非常重要;这些应用范围很广,小到让你的假期照片看起来更漂亮,大到提高卫星图像的质量。ROF 模型具有很好的性质:使处理后的图像更平滑,同时保持图像边缘和结构信息。
ROF 模型的数学基础和处理技巧非常高深,不在本书讲述范围之内。在讲述如何基于 Chambolle 提出的算法 [5] 实现 ROF 求解器之前,本书首先简要介绍一下 ROF 模型。
一幅(灰度)图像 I全变差(Total Variation,TV)定义为梯度范数之和。在连续表示的情况下,全变差表示为:
DSC0004.png

图 1-13:使用 ROF 模型对合成图像去噪:(a)为原始噪声图像;(b)为经过高斯模糊的图像(&sigma;=10);(c)为经过 ROF 模型去噪后的图像
下面看一下在实际图像中使用 ROF 模型去噪的效果:

from PIL import Image
from pylab import *
import rof
im = array(Image.open('empire.jpg').convert('L'))
U,T = rof.denoise(im,im)
figure()
gray()
imshow(U)
axis('equal')
axis('off')
show()


经过 ROF 去噪后的图像如图 1-14c 所示。为了方便比较,该图中同样显示了模糊后的图像。可以看到,ROF 去噪后的图像保留了边缘和图像的结构信息,同时模糊了“噪声”。
DSC0005.png
图 1-14:使用 ROF 模型对灰度图像去噪:(a)为原始噪声图像;(b)为经过高斯模糊的图像(&sigma;=5);(c)为经过 ROF 模型去噪后的图像

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-145719-1-1.html 上篇帖子: LRU算法的Python实现 下篇帖子: python 获取当前调用函数名等log信息
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表