设为首页 收藏本站
查看: 889|回复: 0

[经验分享] Hadoop深入学习:Mapper组件详解

[复制链接]

尚未签到

发表于 2016-12-10 10:31:02 | 显示全部楼层 |阅读模式
本节我们主要学习MapReduce编程接口模型中的Mapper组件,主要是学习其中一些的方法,如setup()、map()和cleanup()等方法地使用。
        我们先来看一下新版本中的Mapper代码:
public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
public class Context
extends MapContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
public Context(Configuration conf, TaskAttemptID taskid,
RecordReader<KEYIN,VALUEIN> reader,
RecordWriter<KEYOUT,VALUEOUT> writer,
OutputCommitter committer,
StatusReporter reporter,
InputSplit split) throws IOException, InterruptedException {
super(conf, taskid, reader, writer, committer, reporter, split);
}
}
/**
* 在Map Task任务开始执行的时候首先会调用该方法,只执行一次
* 主要用于全局变量或重量级的操作的初始化,如集成HBase的时候,生成HTablePool
* 如pool = new HTablePool();
* 开发者一般可以不override该方法
* Called once at the beginning of the task.
*/
protected void setup(Context context
) throws IOException, InterruptedException {
// NOTHING
}
/**
* 开发者在该方法中来处理自己需要关注业务逻辑
* Called once for each key/value pair in the input split. Most applications
* should override this, but the default is the identity function.
*/
@SuppressWarnings("unchecked")
protected void map(KEYIN key, VALUEIN value,
Context context) throws IOException, InterruptedException {
context.write((KEYOUT) key, (VALUEOUT) value);//context.write()执行后开始map断的shuffle处理过程。   
}
/**
* Called once at the end of the task.
* 在Map Task任务执行结束的时候调用该方法,且只执行一次
* 该方法用于释放在setup()中初始化的一些重量级的资源
* 一般情况下,开发者可以不用override该方法
*/
protected void cleanup(Context context
) throws IOException, InterruptedException {
// NOTHING
}
/**
* 该方法由框架调用,对于初级的Hadoop开发者而言,可以不需要修改该方法,但是对于
* 资深的Hadoop开发者来说,可以重写该方法以达到完全精确控制整个Mapper的处理流程
* Expert users can override this method for more complete control over the
* execution of the Mapper.
* @param context
* @throws IOException
*/
public void run(Context context) throws IOException, InterruptedException {
//Map Task执行流程的第一步
setup(context);
//第二步,循环调用map()方法来专注于开发者的业务逻辑处理
while (context.nextKeyValue()) {
map(context.getCurrentKey(), context.getCurrentValue(), context);
}
//第三步,清除Task的上下文信息或释放全局的重量级的资源
cleanup(context);
}
}

        我们再来看一看Mapper的处理流程:
DSC0000.jpg
        在整个Map Task的处理流程中,由几点需要特别注意:
        1)、Map处理的中间结果会以临时数据文件方式被保存在linux的本地文件系统上,而非HDFS文件系统上。
        2)、Map Task处理过的数据会溢写超过内存缓冲区阀值的数据,经排序、spill、和合并操作,经所有的临时的中间数据文件合并成一个大文件和一个索引文件,具体过程详见MapTask详解

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-312274-1-1.html 上篇帖子: hadoop实现简单的倒排索引 下篇帖子: Hadoop中map数的计算
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表