设为首页 收藏本站
查看: 1250|回复: 0

[经验分享] 深度学习实践系列(2)- 搭建notMNIST的深度神经网络

[复制链接]

尚未签到

发表于 2017-6-22 09:47:55 | 显示全部楼层 |阅读模式
  如果你希望系统性的了解神经网络,请参考零基础入门深度学习系列 ,下面我会粗略的介绍一下本文中实现神经网络需要了解的知识。

什么是深度神经网络?
DSC0000.png

  神经网络包含三层:输入层(X)、隐藏层和输出层:f(x)
  每层之间每个节点都是完全连接的,其中包含权重(W)。每层都存在一个偏移值(b)。
  每一层节点的计算方式如下:
DSC0001.png

  其中g()代表激活函数,o()代表softmax输出函数。
  使用Flow Graph的方式来表达如何正向推导神经网络,可以表达如下:
  x: 输入值
  a(x):表示每个隐藏层的pre-activation的数据,由前一个隐藏层数据(h)、权重(w)和偏移值(b)计算而来
  h(x):表示每个隐藏层的数据
  f(x):表示输出层数据
DSC0002.png


激活函数ReLUs
  激活函数有很多种类,例如sigmoid、tanh、ReLUs,对于深度神经网络而言,目前最流行的是ReLUs。
  关于几种激活函数的对比可以参见:常用激活函数的总结与比较
  ReLUs函数如下:
DSC0003.png


反向传播

现在,我们需要知道一个神经网络的每个连接上的权值是如何得到的。我们可以说神经网络是一个模型,那么这些权值就是模型的参数,也就是模型要学习的东西。然而,一个神经网络的连接方式、网络的层数、每层的节点数这些参数,则不是学习出来的,而是人为事先设置的。对于这些人为设置的参数,我们称之为超参数(Hyper-Parameters)。
接下来,我们将要介绍神经网络的训练算法:反向传播算法。
具体内容请参考:零基础入门深度学习(3) - 神经网络和反向传播算法

SGD
  梯度下降算法是一种不断调整参数值从而达到减少Loss function的方法,通过不断迭代而获得最佳的权重值。梯度下降传统上是每次迭代都使用全部训练数据来进行参数调整,随机梯度下降则是使用少量训练数据来进行调整。
  关于GD和SGD的区别可以参考:GD(梯度下降)和SGD(随机梯度下降)

正则化和Dropout
  正则化和Dropout都是一些防止过度拟合的方法,详细介绍可以参考:正则化方法:L1和L2 regularization、数据集扩增、dropout
  正则化:通过在Loss function中加入对权重(w)的惩罚,可以限制权重值变得非常大
DSC0004.png

  Dropout: 通过随机抛弃一些节点,使得神经网络更加多样性,然后组合起来获得的结果更加通用。
DSC0005.png

  好吧,基本的概念大概介绍了一遍,开始撸代码啦。
  请先参考深度学习实践系列(1)- 从零搭建notMNIST逻辑回归模型,获得notMNIST.pickle的训练数据。
  1. 引用第三方库



# These are all the modules we'll be using later. Make sure you can import them
# before proceeding further.
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range
  2. 读取数据



pickle_file = 'notMNIST.pickle'
with open(pickle_file, 'rb') as f:
save = pickle.load(f)
train_dataset = save['train_dataset']
train_labels = save['train_labels']
valid_dataset = save['valid_dataset']
valid_labels = save['valid_labels']
test_dataset = save['test_dataset']
test_labels = save['test_labels']
del save  # hint to help gc free up memory
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
Training set (200000, 28, 28) (200000,)
Validation set (10000, 28, 28) (10000,)
Test set (10000, 28, 28) (10000,)
  3. 调整数据格式以便后续训练



image_size = 28
num_labels = 10
def reformat(dataset, labels):
dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32)
# Map 0 to [1.0, 0.0, 0.0 ...], 1 to [0.0, 1.0, 0.0 ...]
labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
Training set (200000, 784) (200000, 10)
Validation set (10000, 784) (10000, 10)
Test set (10000, 784) (10000, 10)


  4. 定义神经网络



# With gradient descent training, even this much data is prohibitive.
# Subset the training data for faster turnaround.
train_subset = 10000
graph = tf.Graph()
with graph.as_default():
# Input data.
# Load the training, validation and test data into constants that are
# attached to the graph.
tf_train_dataset = tf.constant(train_dataset[:train_subset, :])
tf_train_labels = tf.constant(train_labels[:train_subset])
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
# Variables.
# These are the parameters that we are going to be training. The weight
# matrix will be initialized using random values following a (truncated)
# normal distribution. The biases get initialized to zero.
weights = tf.Variable(
tf.truncated_normal([image_size * image_size, num_labels]))
biases = tf.Variable(tf.zeros([num_labels]))
# Training computation.
# We multiply the inputs with the weight matrix, and add biases. We compute
# the softmax and cross-entropy (it's one operation in TensorFlow, because
# it's very common, and it can be optimized). We take the average of this
# cross-entropy across all training examples: that's our loss.
logits = tf.matmul(tf_train_dataset, weights) + biases
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
# Optimizer.
# We are going to find the minimum of this loss using gradient descent.
optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
# Predictions for the training, validation, and test data.
# These are not part of training, but merely here so that we can report
# accuracy figures as we train.
train_prediction = tf.nn.softmax(logits)
valid_prediction = tf.nn.softmax(
tf.matmul(tf_valid_dataset, weights) + biases)
test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases)
  5. 使用梯度下降(GD)训练神经网络



num_steps = 801
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
with tf.Session(graph=graph) as session:
# This is a one-time operation which ensures the parameters get initialized as
# we described in the graph: random weights for the matrix, zeros for the
# biases.
  tf.global_variables_initializer().run()
print('Initialized')
for step in range(num_steps):
# Run the computations. We tell .run() that we want to run the optimizer,
# and get the loss value and the training predictions returned as numpy
# arrays.
_, l, predictions = session.run([optimizer, loss, train_prediction])
if (step % 100 == 0):
print('Loss at step %d: %f' % (step, l))
print('Training accuracy: %.1f%%' % accuracy(
predictions, train_labels[:train_subset, :]))
# Calling .eval() on valid_prediction is basically like calling run(), but
# just to get that one numpy array. Note that it recomputes all its graph
# dependencies.
print('Validation accuracy: %.1f%%' % accuracy(
valid_prediction.eval(), valid_labels))
print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
Initialized
Loss at step 0: 16.516306
Training accuracy: 11.4%
Validation accuracy: 11.7%
Loss at step 100: 2.269041
Training accuracy: 71.8%
Validation accuracy: 70.2%
Loss at step 200: 1.816886
Training accuracy: 74.8%
Validation accuracy: 72.6%
Loss at step 300: 1.574824
Training accuracy: 76.0%
Validation accuracy: 73.6%
Loss at step 400: 1.415523
Training accuracy: 77.1%
Validation accuracy: 73.9%
Loss at step 500: 1.299691
Training accuracy: 78.0%
Validation accuracy: 74.4%
Loss at step 600: 1.209450
Training accuracy: 78.6%
Validation accuracy: 74.6%
Loss at step 700: 1.135888
Training accuracy: 79.0%
Validation accuracy: 74.9%
Loss at step 800: 1.074228
Training accuracy: 79.5%
Validation accuracy: 75.0%
Test accuracy: 82.3%
  6. 使用随机梯度下降(SGD)算法



batch_size = 128
graph = tf.Graph()
with graph.as_default():
# Input data. For the training data, we use a placeholder that will be fed
# at run time with a training minibatch.
tf_train_dataset = tf.placeholder(tf.float32,
shape=(batch_size, image_size * image_size))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
# Variables.
weights = tf.Variable(
tf.truncated_normal([image_size * image_size, num_labels]))
biases = tf.Variable(tf.zeros([num_labels]))
# Training computation.
logits = tf.matmul(tf_train_dataset, weights) + biases
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
# Predictions for the training, validation, and test data.
train_prediction = tf.nn.softmax(logits)
valid_prediction = tf.nn.softmax(
tf.matmul(tf_valid_dataset, weights) + biases)
test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases)
num_steps = 3001
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
print("Initialized")
for step in range(num_steps):
# Pick an offset within the training data, which has been randomized.
# Note: we could use better randomization across epochs.
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
# Generate a minibatch.
batch_data = train_dataset[offset:(offset + batch_size), :]
batch_labels = train_labels[offset:(offset + batch_size), :]
# Prepare a dictionary telling the session where to feed the minibatch.
# The key of the dictionary is the placeholder node of the graph to be fed,
# and the value is the numpy array to feed to it.
feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
_, l, predictions = session.run(
[optimizer, loss, train_prediction], feed_dict=feed_dict)
if (step % 500 == 0):
print("Minibatch loss at step %d: %f" % (step, l))
print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
print("Validation accuracy: %.1f%%" % accuracy(
valid_prediction.eval(), valid_labels))
print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
Initialized
Minibatch loss at step 0: 18.121506
Minibatch accuracy: 11.7%
Validation accuracy: 15.0%
Minibatch loss at step 500: 1.192153
Minibatch accuracy: 80.5%
Validation accuracy: 76.1%
Minibatch loss at step 1000: 1.309419
Minibatch accuracy: 75.8%
Validation accuracy: 76.8%
Minibatch loss at step 1500: 0.739157
Minibatch accuracy: 83.6%
Validation accuracy: 77.3%
Minibatch loss at step 2000: 0.854160
Minibatch accuracy: 85.2%
Validation accuracy: 77.5%
Minibatch loss at step 2500: 1.045702
Minibatch accuracy: 76.6%
Validation accuracy: 78.8%
Minibatch loss at step 3000: 0.940078
Minibatch accuracy: 79.7%
Validation accuracy: 78.8%
Test accuracy: 85.8%



  7. 使用ReLUs激活函数



batch_size = 128
hidden_layer_size = 1024
graph = tf.Graph()
with graph.as_default():
# Input data. For the training data, we use a placeholder that will be fed
# at run time with a training minibatch.
tf_train_dataset = tf.placeholder(tf.float32,
shape=(batch_size, image_size * image_size))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
# Variables.
# Hidden layer (RELU magic)
   
weights_hidden = tf.Variable(
tf.truncated_normal([image_size * image_size, hidden_layer_size]))
biases_hidden = tf.Variable(tf.zeros([hidden_layer_size]))
hidden = tf.nn.relu(tf.matmul(tf_train_dataset, weights_hidden) + biases_hidden)
# Output layer

weights_output = tf.Variable(
tf.truncated_normal([hidden_layer_size, num_labels]))
biases_output = tf.Variable(tf.zeros([num_labels]))
# Training computation.
   
logits = tf.matmul(hidden, weights_output) + biases_output
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
# Optimizer.

optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
# Predictions for the training, validation, and test data.
# Creation of hidden layer of RELU for the validation and testing process
   
train_prediction = tf.nn.softmax(logits)
hidden_validation = tf.nn.relu(tf.matmul(tf_valid_dataset, weights_hidden) + biases_hidden)
valid_prediction = tf.nn.softmax(
tf.matmul(hidden_validation, weights_output) + biases_output)
hidden_prediction = tf.nn.relu(tf.matmul(tf_test_dataset, weights_hidden) + biases_hidden)
test_prediction = tf.nn.softmax(tf.matmul(hidden_prediction, weights_output) + biases_output)
num_steps = 3001
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
print("Initialized")
for step in range(num_steps):
# Pick an offset within the training data, which has been randomized.
# Note: we could use better randomization across epochs.
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
# Generate a minibatch.
batch_data = train_dataset[offset:(offset + batch_size), :]
batch_labels = train_labels[offset:(offset + batch_size), :]
# Prepare a dictionary telling the session where to feed the minibatch.
# The key of the dictionary is the placeholder node of the graph to be fed,
# and the value is the numpy array to feed to it.
feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
_, l, predictions = session.run(
[optimizer, loss, train_prediction], feed_dict=feed_dict)
if (step % 500 == 0):
print("Minibatch loss at step %d: %f" % (step, l))
print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
print("Validation accuracy: %.1f%%" % accuracy(
valid_prediction.eval(), valid_labels))
print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
Initialized
Minibatch loss at step 0: 282.291931
Minibatch accuracy: 14.1%
Validation accuracy: 32.1%
Minibatch loss at step 500: 18.090569
Minibatch accuracy: 82.0%
Validation accuracy: 79.7%
Minibatch loss at step 1000: 15.504422
Minibatch accuracy: 75.0%
Validation accuracy: 80.8%
Minibatch loss at step 1500: 5.314545
Minibatch accuracy: 87.5%
Validation accuracy: 80.6%
Minibatch loss at step 2000: 3.442260
Minibatch accuracy: 86.7%
Validation accuracy: 81.5%
Minibatch loss at step 2500: 2.226066
Minibatch accuracy: 83.6%
Validation accuracy: 82.6%
Minibatch loss at step 3000: 2.228517
Minibatch accuracy: 83.6%
Validation accuracy: 82.5%
Test accuracy: 89.6%
  8. 正则化



import math
batch_size = 128
hidden_layer_size = 1024 # Doubled because half of the results are discarded
regularization_beta = 5e-4
graph = tf.Graph()
with graph.as_default():
# Input data. For the training data, we use a placeholder that will be fed
# at run time with a training minibatch.
tf_train_dataset = tf.placeholder(tf.float32,
shape=(batch_size, image_size * image_size))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
# Variables.
# Hidden layer (RELU magic)
   
weights_hidden_1 = tf.Variable(
tf.truncated_normal([image_size * image_size, hidden_layer_size],
stddev=1 / math.sqrt(float(image_size * image_size))))
biases_hidden_1 = tf.Variable(tf.zeros([hidden_layer_size]))
hidden_1 = tf.nn.relu(tf.matmul(tf_train_dataset, weights_hidden_1) + biases_hidden_1)
weights_hidden_2 = tf.Variable(tf.truncated_normal([hidden_layer_size, hidden_layer_size],
stddev=1 / math.sqrt(float(image_size * image_size))))
biases_hidden_2 = tf.Variable(tf.zeros([hidden_layer_size]))
hidden_2 = tf.nn.relu(tf.matmul(hidden_1, weights_hidden_2) + biases_hidden_2)
# Output layer

weights_output = tf.Variable(
tf.truncated_normal([hidden_layer_size, num_labels],
stddev=1 / math.sqrt(float(image_size * image_size))))
biases_output = tf.Variable(tf.zeros([num_labels]))
# Training computation.
   
logits = tf.matmul(hidden_2, weights_output) + biases_output
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
# L2 regularization on hidden and output weights and biases
   
regularizers = (tf.nn.l2_loss(weights_hidden_1) + tf.nn.l2_loss(biases_hidden_1) +
tf.nn.l2_loss(weights_hidden_2) + tf.nn.l2_loss(biases_hidden_2) +
tf.nn.l2_loss(weights_output) + tf.nn.l2_loss(biases_output))
loss = loss + regularization_beta * regularizers
# Optimizer.

optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
# Predictions for the training, validation, and test data.
# Creation of hidden layer of RELU for the validation and testing process
   
train_prediction = tf.nn.softmax(logits)
hidden_validation_1 = tf.nn.relu(tf.matmul(tf_valid_dataset, weights_hidden_1) + biases_hidden_1)
hidden_validation_2 = tf.nn.relu(tf.matmul(hidden_validation_1, weights_hidden_2) + biases_hidden_2)
valid_prediction = tf.nn.softmax(
tf.matmul(hidden_validation_2, weights_output) + biases_output)
hidden_prediction_1 = tf.nn.relu(tf.matmul(tf_test_dataset, weights_hidden_1) + biases_hidden_1)
hidden_prediction_2 = tf.nn.relu(tf.matmul(hidden_prediction_1, weights_hidden_2) + biases_hidden_2)
test_prediction = tf.nn.softmax(tf.matmul(hidden_prediction_2, weights_output) + biases_output)
num_steps = 3001
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
print("Initialized")
for step in range(num_steps):
# Pick an offset within the training data, which has been randomized.
# Note: we could use better randomization across epochs.
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
# Generate a minibatch.
batch_data = train_dataset[offset:(offset + batch_size), :]
batch_labels = train_labels[offset:(offset + batch_size), :]
# Prepare a dictionary telling the session where to feed the minibatch.
# The key of the dictionary is the placeholder node of the graph to be fed,
# and the value is the numpy array to feed to it.
feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
_, l, predictions = session.run(
[optimizer, loss, train_prediction], feed_dict=feed_dict)
if (step % 500 == 0):
print("Minibatch loss at step %d: %f" % (step, l))
print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
print("Validation accuracy: %.1f%%" % accuracy(
valid_prediction.eval(), valid_labels))
print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
Initialized
Minibatch loss at step 0: 2.769384
Minibatch accuracy: 8.6%
Validation accuracy: 34.8%
Minibatch loss at step 500: 0.735681
Minibatch accuracy: 89.1%
Validation accuracy: 86.2%
Minibatch loss at step 1000: 0.791112
Minibatch accuracy: 85.9%
Validation accuracy: 86.9%
Minibatch loss at step 1500: 0.523572
Minibatch accuracy: 93.0%
Validation accuracy: 88.1%
Minibatch loss at step 2000: 0.487140
Minibatch accuracy: 95.3%
Validation accuracy: 88.5%
Minibatch loss at step 2500: 0.529468
Minibatch accuracy: 89.8%
Validation accuracy: 88.4%
Minibatch loss at step 3000: 0.531258
Minibatch accuracy: 86.7%
Validation accuracy: 88.9%
Test accuracy: 94.7%
  9. Dropout



import math
batch_size = 128
hidden_layer_size = 2048 # Doubled because half of the results are discarded
regularization_beta = 5e-4
graph = tf.Graph()
with graph.as_default():
# Input data. For the training data, we use a placeholder that will be fed
# at run time with a training minibatch.
tf_train_dataset = tf.placeholder(tf.float32,
shape=(batch_size, image_size * image_size))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
# Variables.
# Hidden layer (RELU magic)
   
weights_hidden_1 = tf.Variable(
tf.truncated_normal([image_size * image_size, hidden_layer_size],
stddev=1 / math.sqrt(float(image_size * image_size))))
biases_hidden_1 = tf.Variable(tf.zeros([hidden_layer_size]))
hidden_1 = tf.nn.relu(tf.matmul(tf_train_dataset, weights_hidden_1) + biases_hidden_1)
weights_hidden_2 = tf.Variable(tf.truncated_normal([hidden_layer_size, hidden_layer_size],
stddev=1 / math.sqrt(float(image_size * image_size))))
biases_hidden_2 = tf.Variable(tf.zeros([hidden_layer_size]))
hidden_2 = tf.nn.relu(tf.matmul(tf.nn.dropout(hidden_1, 0.5), weights_hidden_2) + biases_hidden_2)
# Output layer

weights_output = tf.Variable(
tf.truncated_normal([hidden_layer_size, num_labels],
stddev=1 / math.sqrt(float(image_size * image_size))))
biases_output = tf.Variable(tf.zeros([num_labels]))
# Training computation.
   
logits = tf.matmul(tf.nn.dropout(hidden_2, 0.5), weights_output) + biases_output
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
# L2 regularization on hidden and output weights and biases
   
regularizers = (tf.nn.l2_loss(weights_hidden_1) + tf.nn.l2_loss(biases_hidden_1) +
tf.nn.l2_loss(weights_hidden_2) + tf.nn.l2_loss(biases_hidden_2) +
tf.nn.l2_loss(weights_output) + tf.nn.l2_loss(biases_output))
loss = loss + regularization_beta * regularizers
# Optimizer.

optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
# Predictions for the training, validation, and test data.
# Creation of hidden layer of RELU for the validation and testing process
   
train_prediction = tf.nn.softmax(logits)
hidden_validation_1 = tf.nn.relu(tf.matmul(tf_valid_dataset, weights_hidden_1) + biases_hidden_1)
hidden_validation_2 = tf.nn.relu(tf.matmul(hidden_validation_1, weights_hidden_2) + biases_hidden_2)
valid_prediction = tf.nn.softmax(
tf.matmul(hidden_validation_2, weights_output) + biases_output)
hidden_prediction_1 = tf.nn.relu(tf.matmul(tf_test_dataset, weights_hidden_1) + biases_hidden_1)
hidden_prediction_2 = tf.nn.relu(tf.matmul(hidden_prediction_1, weights_hidden_2) + biases_hidden_2)
test_prediction = tf.nn.softmax(tf.matmul(hidden_prediction_2, weights_output) + biases_output)
num_steps = 5001
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
print("Initialized")
for step in range(num_steps):
# Pick an offset within the training data, which has been randomized.
# Note: we could use better randomization across epochs.
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
# Generate a minibatch.
batch_data = train_dataset[offset:(offset + batch_size), :]
batch_labels = train_labels[offset:(offset + batch_size), :]
# Prepare a dictionary telling the session where to feed the minibatch.
# The key of the dictionary is the placeholder node of the graph to be fed,
# and the value is the numpy array to feed to it.
feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
_, l, predictions = session.run(
[optimizer, loss, train_prediction], feed_dict=feed_dict)
if (step % 500 == 0):
print("Minibatch loss at step %d: %f" % (step, l))
print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
print("Validation accuracy: %.1f%%" % accuracy(
valid_prediction.eval(), valid_labels))
print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
WARNING:tensorflow:From <ipython-input-12-3684c7218154>:8: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.
Initialized
Minibatch loss at step 0: 4.059163
Minibatch accuracy: 7.8%
Validation accuracy: 31.5%
Minibatch loss at step 500: 1.626858
Minibatch accuracy: 86.7%
Validation accuracy: 84.8%
Minibatch loss at step 1000: 1.492026
Minibatch accuracy: 82.0%
Validation accuracy: 85.8%
Minibatch loss at step 1500: 1.139689
Minibatch accuracy: 92.2%
Validation accuracy: 87.1%
Minibatch loss at step 2000: 0.970064
Minibatch accuracy: 93.0%
Validation accuracy: 87.1%
Minibatch loss at step 2500: 0.963178
Minibatch accuracy: 87.5%
Validation accuracy: 87.6%
Minibatch loss at step 3000: 0.870884
Minibatch accuracy: 87.5%
Validation accuracy: 87.6%
Minibatch loss at step 3500: 0.898399
Minibatch accuracy: 85.2%
Validation accuracy: 87.7%
Minibatch loss at step 4000: 0.737084
Minibatch accuracy: 91.4%
Validation accuracy: 88.0%
Minibatch loss at step 4500: 0.646125
Minibatch accuracy: 88.3%
Validation accuracy: 87.7%
Minibatch loss at step 5000: 0.685591
Minibatch accuracy: 88.3%
Validation accuracy: 88.6%
Test accuracy: 94.4%
  最后总结一下各种算法的训练表现,可以看出使用正则化和Dropout后训练效果明显变好,最后趋近于95%的准确率了。
DSC0006.png

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-386751-1-1.html 上篇帖子: 操作系统之cache、伙伴系统、内存碎片、段式页式存储管理 下篇帖子: HTML5之美
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表