|
memcachedd事件模型
在memcachedd中,作者为了专注于缓存的设计,使用了libevent来开发事件模型。memcachedd的时间模型同nginx的类似,拥有一个主进行(master)以及多个工作者线程(woker)。
流程图
在memcached中,是先对工作者线程进行初始化并启动,然后才会创建启动主线程。
工作者线程
初始化
memcached对工作者线程进行初始化,参数分别为线程数量以及`main_base`,
/* start up worker threads if MT mode */
thread_init(settings.num_threads, main_base);
/*
* Initializes the thread subsystem, creating various worker threads.
*
* nthreads Number of worker event handler threads to spawn
* main_base Event base for main thread
*/
void thread_init(int nthreads, struct event_base *main_base) {
int i;
int power;
pthread_mutex_init(&cache_lock, NULL);
pthread_mutex_init(&stats_lock, NULL);
pthread_mutex_init(&init_lock, NULL);
pthread_cond_init(&init_cond, NULL);
pthread_mutex_init(&cqi_freelist_lock, NULL);
cqi_freelist = NULL;
/* Want a wide lock table, but don't waste memory */
if (nthreads < 3) {
power = 10;
} else if (nthreads < 4) {
power = 11;
} else if (nthreads < 5) {
power = 12;
} else {
/* 8192 buckets, and central locks don't scale much past 5 threads */
power = 13;
}
item_lock_count = hashsize(power);
item_lock_hashpower = power;
item_locks = calloc(item_lock_count, sizeof(pthread_mutex_t));
if (! item_locks) {
perror("Can't allocate item locks");
exit(1);
}
for (i = 0; i < item_lock_count; i++) {
pthread_mutex_init(&item_locks, NULL);
}
pthread_key_create(&item_lock_type_key, NULL);
pthread_mutex_init(&item_global_lock, NULL);
threads = calloc(nthreads, sizeof(LIBEVENT_THREAD));
if (! threads) {
perror("Can't allocate thread descriptors");
exit(1);
}
dispatcher_thread.base = main_base;
dispatcher_thread.thread_id = pthread_self();
for (i = 0; i < nthreads; i++) {
int fds[2];
if (pipe(fds)) {
perror("Can't create notify pipe");
exit(1);
}
threads.notify_receive_fd = fds[0];
threads.notify_send_fd = fds[1];
setup_thread(&threads);
/* Reserve three fds for the libevent base, and two for the pipe */
stats.reserved_fds += 5;
}
/* Create threads after we've done all the libevent setup. */
for (i = 0; i < nthreads; i++) {
create_worker(worker_libevent, &threads);
}
/* Wait for all the threads to set themselves up before returning. */
pthread_mutex_lock(&init_lock);
wait_for_thread_registration(nthreads);
pthread_mutex_unlock(&init_lock);
}
thread_init源码 在memcachedd中为了避免多线程共享资源的使用使用了很多锁,这里对锁不做介绍。
线程的结构体
typedef struct {
pthread_t thread_id; /* unique ID of this thread 线程ID*/
struct event_base *base; /* libevent handle this thread uses libevent事件*/
struct event notify_event; /* listen event for notify pipe 注册事件*/
int notify_receive_fd; /* receiving end of notify pipe 管道中接收端*/
int notify_send_fd; /* sending end of notify pipe 管道中发送端*/
struct thread_stats stats; /* Stats generated by this thread 线程状态*/
struct conn_queue *new_conn_queue; /* queue of new connections to handle 消息队列*/
cache_t *suffix_cache; /* suffix cache */
uint8_t item_lock_type; /* use fine-grained or global item lock */
} LIBEVENT_THREAD;
初始化工作者线程
for (i = 0; i < nthreads; i++) {
int fds[2];
/* 创建管道 */
if (pipe(fds)) {
perror("Can't create notify pipe");
exit(1);
}
/* 设置线程管道的读写入口 */
threads.notify_receive_fd = fds[0];
threads.notify_send_fd = fds[1];
/* 设置线程属性 */
setup_thread(&threads);
/* Reserve three fds for the libevent base, and two for the pipe */
stats.reserved_fds += 5;
}
设置线程属性
/*
* Set up a thread's information.
*/
static void setup_thread(LIBEVENT_THREAD *me) {
me->base = event_init(); //初始化线程事件
if (! me->base) {
fprintf(stderr, "Can't allocate event base\n");
exit(1);
}
/* 初始化监听事件 */
/* Listen for notifications from other threads */
event_set(&me->notify_event, me->notify_receive_fd,
EV_READ | EV_PERSIST, thread_libevent_process, me);
/* 把事件绑定到线程事件 */
event_base_set(me->base, &me->notify_event);
/* 注册事件到监听状态 */
if (event_add(&me->notify_event, 0) == -1) {
fprintf(stderr, "Can't monitor libevent notify pipe\n");
exit(1);
}
...
}
READ回调函数
/*
* Processes an incoming "handle a new connection" item. This is called when
* input arrives on the libevent wakeup pipe.
*/
static void thread_libevent_process(int fd, short which, void *arg) {
...
/* 从管道读取消息 */
if (read(fd, buf, 1) != 1)
if (settings.verbose > 0)
fprintf(stderr, "Can't read from libevent pipe\n");
item = cq_pop(me->new_conn_queue); //读取连接
...
}
启动工作者线程
/* Create threads after we've done all the libevent setup. */
for (i = 0; i < nthreads; i++) {
create_worker(worker_libevent, &threads);
}
`create_woker`函数创建工作者线程,
/*
* Creates a worker thread.
*/
static void create_worker(void *(*func)(void *), void *arg) {
pthread_t thread;
pthread_attr_t attr;
int ret;
pthread_attr_init(&attr);
if ((ret = pthread_create(&thread, &attr, func, arg)) != 0) {
fprintf(stderr, "Can't create thread: %s\n",
strerror(ret));
exit(1);
}
}
`worker_libevent`函数进入线程循环监听状态,
/*
* Worker thread: main event loop
*/
static void *worker_libevent(void *arg) {
LIBEVENT_THREAD *me = arg;
/* Any per-thread setup can happen here; thread_init() will block until
* all threads have finished initializing.
*/
/* set an indexable thread-specific memory item for the lock type.
* this could be unnecessary if we pass the conn *c struct through
* all item_lock calls...
*/
me->item_lock_type = ITEM_LOCK_GRANULAR;
pthread_setspecific(item_lock_type_key, &me->item_lock_type);
register_thread_initialized();
event_base_loop(me->base, 0);
return NULL;
}
主线程
初始化
static struct event_base* mian_base;
/* initialize main thread libevent instance */
main_base = event_init();
在`memcached.c`的主函数中,使用`libevent`的事件初始化函数来初始化`main_base`。
初始化socket
这里只介绍tcp连接,其中使用`server_sockets`来调用`server_socket`来初始化连接。
if (settings.port && server_sockets(settings.port, tcp_transport, portnumber_file)) {
vperror("failed to listzhefen on TCP port %d", settings.port);
exit(EX_OSERR);
}
static int server_sockets(int port, enum network_transport transport,
FILE *portnumber_file) {
if (settings.inter == NULL) {
return server_socket(settings.inter, port, transport, portnumber_file);
}
...
}
而在`server_socket`中完成了socket的初始化、绑定等操作。
/**
* Create a socket and bind it to a specific port number
* @param interface the interface to bind to
* @param port the port number to bind to
* @param transport the transport protocol (TCP / UDP)
* @param portnumber_file A filepointer to write the port numbers to
* when they are successfully added to the list of ports we
* listen on.
*/
static int server_socket(const char *interface,
int port,
enum network_transport transport,
FILE *portnumber_file) {
int sfd;
struct linger ling = {0, 0};
struct addrinfo *ai;
struct addrinfo *next;
struct addrinfo hints = { .ai_flags = AI_PASSIVE,
.ai_family = AF_UNSPEC };
char port_buf[NI_MAXSERV];
int error;
int success = 0;
int flags =1;
hints.ai_socktype = IS_UDP(transport) ? SOCK_DGRAM : SOCK_STREAM;
if (port == -1) {
port = 0;
}
snprintf(port_buf, sizeof(port_buf), "%d", port);
error= getaddrinfo(interface, port_buf, &hints, &ai);
if (error != 0) {
if (error != EAI_SYSTEM)
fprintf(stderr, "getaddrinfo(): %s\n", gai_strerror(error));
else
perror("getaddrinfo()");
return 1;
}
for (next= ai; next; next= next->ai_next) {
conn *listen_conn_add;
if ((sfd = new_socket(next)) == -1) {
/* getaddrinfo can return "junk" addresses,
* we make sure at least one works before erroring.
*/
if (errno == EMFILE) {
/* ...unless we're out of fds */
perror("server_socket");
exit(EX_OSERR);
}
continue;
}
#ifdef IPV6_V6ONLY
if (next->ai_family == AF_INET6) {
error = setsockopt(sfd, IPPROTO_IPV6, IPV6_V6ONLY, (char *) &flags, sizeof(flags));
if (error != 0) {
perror("setsockopt");
close(sfd);
continue;
}
}
#endif
setsockopt(sfd, SOL_SOCKET, SO_REUSEADDR, (void *)&flags, sizeof(flags));
if (IS_UDP(transport)) {
maximize_sndbuf(sfd);
} else {
error = setsockopt(sfd, SOL_SOCKET, SO_KEEPALIVE, (void *)&flags, sizeof(flags));
if (error != 0)
perror("setsockopt");
error = setsockopt(sfd, SOL_SOCKET, SO_LINGER, (void *)&ling, sizeof(ling));
if (error != 0)
perror("setsockopt");
error = setsockopt(sfd, IPPROTO_TCP, TCP_NODELAY, (void *)&flags, sizeof(flags));
if (error != 0)
perror("setsockopt");
}
if (bind(sfd, next->ai_addr, next->ai_addrlen) == -1) {
if (errno != EADDRINUSE) {
perror("bind()");
close(sfd);
freeaddrinfo(ai);
return 1;
}
close(sfd);
continue;
} else {
success++;
if (!IS_UDP(transport) && listen(sfd, settings.backlog) == -1) {
perror("listen()");
close(sfd);
freeaddrinfo(ai);
return 1;
}
if (portnumber_file != NULL &&
(next->ai_addr->sa_family == AF_INET ||
next->ai_addr->sa_family == AF_INET6)) {
union {
struct sockaddr_in in;
struct sockaddr_in6 in6;
} my_sockaddr;
socklen_t len = sizeof(my_sockaddr);
if (getsockname(sfd, (struct sockaddr*)&my_sockaddr, &len)==0) {
if (next->ai_addr->sa_family == AF_INET) {
fprintf(portnumber_file, "%s INET: %u\n",
IS_UDP(transport) ? "UDP" : "TCP",
ntohs(my_sockaddr.in.sin_port));
} else {
fprintf(portnumber_file, "%s INET6: %u\n",
IS_UDP(transport) ? "UDP" : "TCP",
ntohs(my_sockaddr.in6.sin6_port));
}
}
}
}
if (IS_UDP(transport)) {
int c;
for (c = 0; c < settings.num_threads_per_udp; c++) {
/* Allocate one UDP file descriptor per worker thread;
* this allows "stats conns" to separately list multiple
* parallel UDP requests in progress.
*
* The dispatch code round-robins new connection requests
* among threads, so this is guaranteed to assign one
* FD to each thread.
*/
int per_thread_fd = c ? dup(sfd) : sfd;
dispatch_conn_new(per_thread_fd, conn_read,
EV_READ | EV_PERSIST,
UDP_READ_BUFFER_SIZE, transport);
}
} else {
if (!(listen_conn_add = conn_new(sfd, conn_listening,
EV_READ | EV_PERSIST, 1,
transport, main_base))) {
fprintf(stderr, "failed to create listening connection\n");
exit(EXIT_FAILURE);
}
listen_conn_add->next = listen_conn;
listen_conn = listen_conn_add;
}
}
freeaddrinfo(ai);
/* Return zero iff we detected no errors in starting up connections */
return success == 0;
}
server_socket源码
主线程事件
在主线程中通过`conn_new`函数来建立主线程和工作者线程之间的关系。
/* 设置线程事件 */
event_set(&c->event, sfd, event_flags, event_handler, (void *)c);
event_base_set(base, &c->event);
c->ev_flags = event_flags;
/* 注册事件到监听 */
if (event_add(&c->event, 0) == -1) {
perror("event_add");
return NULL;
}
事件处理
上面中设置了事件的回调函数`event_handler`,而在`event_handler`中,主要调用了`driver_machine`函数。
driver_machine看名字就知道,想发动机一样的函数,那么该函数主要是处理各种事件以及相应的处理方法。
这里只简要介绍一个函数调用`dispatch_conn_new`。
void dispatch_conn_new(int sfd, enum conn_states init_state, int event_flags,
int read_buffer_size, enum network_transport transport) {
CQ_ITEM *item = cqi_new();
char buf[1];
if (item == NULL) {
close(sfd);
/* given that malloc failed this may also fail, but let's try */
fprintf(stderr, "Failed to allocate memory for connection object\n");
return ;
}
int tid = (last_thread + 1) % settings.num_threads;
LIBEVENT_THREAD *thread = threads + tid; //循环获取工作者线程
last_thread = tid;
item->sfd = sfd;
item->init_state = init_state;
item->event_flags = event_flags;
item->read_buffer_size = read_buffer_size;
item->transport = transport;
cq_push(thread->new_conn_queue, item); //连接加入懂啊队列
memcachedD_CONN_DISPATCH(sfd, thread->thread_id);
buf[0] = 'c';
if (write(thread->notify_send_fd, buf, 1) != 1) {//向管道写入消息
perror("Writing to thread notify pipe");
}
} |
|