|
已经个把月没有写长篇博文了,最近抽了点时间,将memcached源码分析系列文章的线程机制篇给整出来,在分析源码的过程中参考了网上的一些资源。
该文主要集中于两个问题:(1)memcached线程池是如何创建的,(2)线程池中的线程又是如何进行调度的。一切从源码中找答案。
memcached的线程池模型采用较典型的Master-Worker模型:
(1)主线程负责监听客户端的建立连接请求,以及accept 连接,将连接好的套接字放入连接队列;
(2)调度workers空闲线程来负责处理已经建立好的连接的读写等事件。
1 关键数据抽象
(1)memcached单个线程结构的封装
1 //memcached线程结构的封装结构
2 typedef struct {
3 pthread_t thread_id; /* unique ID of this thread */
4 struct event_base *base; /* libevent handle this thread uses */
5 struct event notify_event; /* listen event for notify pipe */
6 int notify_receive_fd; /* receiving end of notify pipe */
7 int notify_send_fd; /* sending end of notify pipe */
8 struct thread_stats stats; /* Stats generated by this thread */
9 struct conn_queue *new_conn_queue; /* queue of new connections to handle */
10 cache_t *suffix_cache; /* suffix cache */
11 } LIBEVENT_THREAD;
这是memcached里的线程结构的封装,可以看到每个线程都包含一个CQ队列,一条通知管道pipe ,% m) z( Q4 O1 P+ d6 一个libevent的实例event_base等。
(2)线程连接队列
1 /* A connection queue. */
2 typedef struct conn_queue CQ;
3 struct conn_queue {
4 CQ_ITEM *head;
5 CQ_ITEM *tail;
6 pthread_mutex_t lock;
7 pthread_cond_t cond;
8 };
每个线程结构体中都指向一个CQ链表,CQ链表管理CQ_ITEM的单向链表。
(3)连接项结构体
1 /* An item in the connection queue. */
2 typedef struct conn_queue_item CQ_ITEM;
3 struct conn_queue_item {
4 int sfd;
5 enum conn_states init_state;
6 int event_flags;
7 int read_buffer_size;
8 enum network_transport transport;
9 CQ_ITEM *next;
10 };
CQ_ITEM实际上是主线程accept后返回的已建立连接的fd的封装,由主线程创建初始化并放入连接链表CQ中,共workers线程使用。
(4)网络连接的封装结构体
1 /**
2 * The structure representing a connection into memcached.
3 */
4 //memcached表示一个conn的抽象结构
5 typedef struct conn conn;
6 struct conn {
7 ..................
8 };
由于这个结构太大,就略去中间的成员不展示了,与我们线程池相关的有一个成员则非常关键,那就是state,它是memcached中状态机驱动的关键(由drive_machine函数实现)。
2 线程池的初始化:
main()中线程池初始化函数入口为:
/* start up worker threads if MT mode */
thread_init(settings.num_threads, main_base);
函数的定义在thread.c实现,源码如下所示:
1 /*
2 * Initializes the thread subsystem, creating various worker threads.
3 *
4 * nthreads Number of worker event handler threads to spawn
5 * main_base Event base for main thread
6 */
7 void thread_init(int nthreads, struct event_base *main_base) {
8 int i;
9
10 pthread_mutex_init(&cache_lock, NULL);
11 pthread_mutex_init(&stats_lock, NULL);
12
13 pthread_mutex_init(&init_lock, NULL);
14 pthread_cond_init(&init_cond, NULL);
15
16 pthread_mutex_init(&cqi_freelist_lock, NULL);
17 cqi_freelist = NULL;
18
19 //分配线程池结构数组
20 threads = calloc(nthreads, sizeof(LIBEVENT_THREAD));
21 if (! threads) {
22 perror("Can't allocate thread descriptors");
23 exit(1);
24 }
25
26 dispatcher_thread.base = main_base;
27 dispatcher_thread.thread_id = pthread_self();
28
29 //为线程池每个线程创建读写管道
30 for (i = 0; i < nthreads; i++) {
31 int fds[2];
32 if (pipe(fds)) {
33 perror("Can't create notify pipe");
34 exit(1);
35 }
36
37 threads.notify_receive_fd = fds[0];
38 threads.notify_send_fd = fds[1];
39
40 //填充线程结构体信息
41 setup_thread(&threads);
42 }
43
44 /* Create threads after we've done all the libevent setup. */
45 for (i = 0; i < nthreads; i++) {
46 //为线程池创建数目为nthreads的线程,worker_libevent为线程的回调函数,
47 create_worker(worker_libevent, &threads);
48 }
49
50 /* Wait for all the threads to set themselves up before returning. */
51 pthread_mutex_lock(&init_lock);
52 while (init_count < nthreads) {
53 pthread_cond_wait(&init_cond, &init_lock);
54 }
55 pthread_mutex_unlock(&init_lock);
56 }
线程池初始化函数由主线程进行调用,该函数先初始化各互斥锁,然后使用calloc分配nthreads*sizeof(LIBEVENT_THREAD)个字节的内存块来管理线程池,返回一个全局static变量 threads(类型为LIBEVENT_THREAD *);然后为每个线程创建一个匿名管道(该pipe将在线程的调度中发挥作用),接下来的setup_thread函数为线程设置事件监听,绑定CQ链表等初始化信息,源码如下所示:
1 /*
2 * Set up a thread's information.
3 */
4 static void setup_thread(LIBEVENT_THREAD *me) {
5 me->base = event_init();
6 if (! me->base) {
7 fprintf(stderr, "Can't allocate event base\n");
8 exit(1);
9 }
10
11 /* Listen for notifications from other threads */
12 //为管道设置读事件监听,thread_libevent_process为回调函数
13 event_set(&me->notify_event, me->notify_receive_fd,
14 EV_READ | EV_PERSIST, thread_libevent_process, me);
15 event_base_set(me->base, &me->notify_event);
16
17 if (event_add(&me->notify_event, 0) == -1) {
18 fprintf(stderr, "Can't monitor libevent notify pipe\n");
19 exit(1);
20 }
21
22 //为新线程创建连接CQ链表
23 me->new_conn_queue = malloc(sizeof(struct conn_queue));
24 if (me->new_conn_queue == NULL) {
25 perror("Failed to allocate memory for connection queue");
26 exit(EXIT_FAILURE);
27 }
28 //初始化线程控制器内的CQ链表
29 cq_init(me->new_conn_queue);
30
31 if (pthread_mutex_init(&me->stats.mutex, NULL) != 0) {
32 perror("Failed to initialize mutex");
33 exit(EXIT_FAILURE);
34 }
35 //创建cache
36 me->suffix_cache = cache_create("suffix", SUFFIX_SIZE, sizeof(char*),
37 NULL, NULL);
38 if (me->suffix_cache == NULL) {
39 fprintf(stderr, "Failed to create suffix cache\n");
40 exit(EXIT_FAILURE);
41 }
42 }
memcached使用libevent实现事件循环,关于libevent,不熟悉的读者可以查看相关资料,这里不做介绍,源码中的这句代码:
event_set(&me->notify_event, me->notify_receive_fd,EV_READ | EV_PERSIST, thread_libevent_process, me);
在me->notify_receive_fd(即匿名管道的读端)设置可读事件,回调函数 为thread_libevent_process,函数定义如下:
1 static void thread_libevent_process(int fd, short which, void *arg) {
2 LIBEVENT_THREAD *me = arg;
3 CQ_ITEM *item;
4 char buf[1];
5
6 //响应pipe可读事件,读取主线程向管道内写的1字节数据(见dispatch_conn_new()函数)
7 if (read(fd, buf, 1) != 1)
8 if (settings.verbose > 0)
9 fprintf(stderr, "Can't read from libevent pipe\n");
10
11 //从链接队列中取出一个conn
12 item = cq_pop(me->new_conn_queue);
13
14 if (NULL != item) {
15 //使用conn创建新的任务
16 conn *c = conn_new(item->sfd, item->init_state, item->event_flags,
17 item->read_buffer_size, item->transport, me->base);
18 if (c == NULL) {
19 if (IS_UDP(item->transport)) {
20 fprintf(stderr, "Can't listen for events on UDP socket\n");
21 exit(1);
22 } else {
23 if (settings.verbose > 0) {
24 fprintf(stderr, "Can't listen for events on fd %d\n",
25 item->sfd);
26 }
27 close(item->sfd);
28 }
29 } else {
30 c->thread = me;
31 }
32 cqi_free(item);
33 }
34 }
使用setup_thread设置线程结构体的初始化信息之后,现在我们回到thread_init函数,thread_init中接着循环调用(循环调用nthreads次)create_worker(worker_libevent, &threads); 创建真正运行的线程,create_worker是对pthread_create()简单的封装,参数worker_libevent作为每个线程的运行体,&threads为传入参数。
worker_libevent为线程体,源码如下:
1 /*
2 * Worker thread: main event loop
3 */
4 static void *worker_libevent(void *arg) {
5 LIBEVENT_THREAD *me = arg;
6
7 /* Any per-thread setup can happen here; thread_init() will block until
8 * all threads have finished initializing.
9 */
10 pthread_mutex_lock(&init_lock);
11 init_count++; //每创建新线程,将全局init_count加1
12 pthread_cond_signal(&init_cond); // 发送init_cond信号
13 pthread_mutex_unlock(&init_lock);
14
15 //新创建线程阻塞于此,等待事件
16 event_base_loop(me->base, 0); //Libevent的事件主循环
17 return NULL;
18 }
worker_libevent中给init_count加1的目的在thread_init函数的这段代码可以看出来,
1 /* Wait for all the threads to set themselves up before returning. */
2 pthread_mutex_lock(&init_lock);
3 while (init_count < nthreads) {
4 pthread_cond_wait(&init_cond, &init_lock);
5 }
6 pthread_mutex_unlock(&init_lock);
即主线程阻塞如此,等待worker_libevent发出的init_cond信号,唤醒后检查init_count < nthreads是否为假(即创建的线程数目是否达到要求),否则继续等待。
至此,线程池创建的代码已分析完毕,由于篇幅较长,将分析线程池中线程的调度流程另立一篇。
|
|