|
文章链接:http://www.hcoding.com/?p=121
个人站点:JC&hcoding.com
memcached是什么呢?memcached是一个优秀的、高性能的内存缓存工具。
memcached具有以下的特点:
- 协议简单:memcached的服务器客户端通信并不使用复杂的MXL等格式,而是使用简单的基于文本的协议。
- 基于libevent的事件处理:libevent是个程序库,他将Linux 的epoll、BSD类操作系统的kqueue等时间处理功能封装成统一的接口。memcached使用这个libevent库,因此能在Linux、BSD、Solaris等操作系统上发挥其高性能。(libevent是什么)
- 内置内存存储方式:为了提高性能,memcached中保存的数据都存储在memcached内置的内存存储空间中。由于数据仅存在于内存中,因此重启memcached,重启操作系统会导致全部数据消失。另外,内容容量达到指定的值之后memcached回自动删除不适用的缓存。
- Memcached不互通信的分布式:memcached尽管是“分布式”缓存服务器,但服务器端并没有分布式功能。各个memcached不会互相通信以共享信息。他的分布式主要是通过客户端实现的。
本文主要讲解memcached的连接模型,memcached由一条主线程(连接线程)监听连接,然后把成功的连接交给子线程(工作线程)处理读写操作。N条【启动memcached通过-t命令指定】子线程(工作线程)负责读写数据,一条子线程(工作线程)维护着多个连接。一个conn结构体对象对应着一个连接,主线程(连接线程)成功连接后,会把连接的内容赋值到一个conn结构体对象,并把这个conn结构体对象传递给一条子线程(工作线程)处理。
conn结构体:
1 typedef struct conn conn;
2 struct conn {
3 int sfd;
4 sasl_conn_t *sasl_conn;
5
6 // 连接状态
7 enum conn_states state;
8 enum bin_substates substate;
9 struct event event;
10 short ev_flags;
11
12 // 刚刚出发的事件
13 short which; /** which events were just triggered */
14
15 // read buffer
16 char *rbuf; /** buffer to read commands into */
17
18 // 已经解析了一部分的命令, 指向已经解析结束的地方
19 char *rcurr; /** but if we parsed some already, this is where we stopped */
20
21 // rbuf 已分配的大小
22 int rsize; /** total allocated size of rbuf */
23
24 // 尚未解析的命令大小
25 int rbytes; /** how much data, starting from rcur, do we have unparsed */
26
27 // buffer to write
28 char *wbuf;
29
30 // 指向已经返回的地方
31 char *wcurr;
32
33 // 写大小
34 int wsize;
35
36 // 尚未写的数据大小
37 int wbytes;
38
39 /** which state to go into after finishing current write */
40 // 当写回结束后需要即刻转变的状态
41 enum conn_states write_and_go;
42
43 void *write_and_free; /** free this memory after finishing writing */
44
45 char *ritem; /** when we read in an item's value, it goes here */
46 int rlbytes;
47
48 /* data for the nread state */
49
50 /**
51 * item is used to hold an item structure created after reading the command
52 * line of set/add/replace commands, but before we finished reading the actual
53 * data. The data is read into ITEM_data(item) to avoid extra copying.
54 */
55
56 // 指向当下需要完成的任务
57 void *item; /* for commands set/add/replace */
58
59 /* data for the swallow state */
60 int sbytes; /* how many bytes to swallow */
61
62 /* data for the mwrite state */
63 struct iovec *iov;
64 int iovsize; /* number of elements allocated in iov[] */
65 int iovused; /* number of elements used in iov[] */
66
67 // msghdr 链表, 一个连接可能有多个 msghdr
68 // 如果是 UDP, 需要为每一个 msghdr 填写一个 UDP 头部
69 struct msghdr *msglist;
70 int msgsize; /* number of elements allocated in msglist[] */
71 int msgused; /* number of elements used in msglist[] */
72 int msgcurr; /* element in msglist[] being transmitted now */
73 int msgbytes; /* number of bytes in current msg */
74
75 item **ilist; /* list of items to write out */
76 int isize;
77 item **icurr;
78
79 // 记录任务数量
80 int ileft;
81
82 char **suffixlist;
83 int suffixsize;
84 char **suffixcurr;
85 int suffixleft;
86
87 enum protocol protocol; /* which protocol this connection speaks */
88 enum network_transport transport; /* what transport is used by this connection */
89
90 /* data for UDP clients */
91 int request_id; /* Incoming UDP request ID, if this is a UDP "connection" */
92 struct sockaddr request_addr; /* Who sent the most recent request */
93 socklen_t request_addr_size;
94
95 unsigned char *hdrbuf; /* udp packet headers */
96 int hdrsize; /* number of headers' worth of space is allocated */
97
98 bool noreply; /* True if the reply should not be sent. */
99 /* current stats command */
100 struct {
101 char *buffer;
102 size_t size;
103 size_t offset;
104 } stats;
105
106 /* Binary protocol stuff */
107 /* This is where the binary header goes */
108 protocol_binary_request_header binary_header;
109 uint64_t cas; /* the cas to return */
110 short cmd; /* current command being processed */
111
112 // ? 不透明
113 int opaque;
114 int keylen;
115
116 // 可见是一个链表
117 conn *next; /* Used for generating a list of conn structures */
118
119 // 指向服务于此连接的线程
120 LIBEVENT_THREAD *thread; /* Pointer to the thread object serving this connection */
121 };
View Code
1 //memcached.c
2 int main{
3
4 // ......
5
6 // 第一步:初始化主线程的事件机制
7 /* initialize main thread libevent instance */
8 // libevent 事件机制初始化
9 main_base = event_init();
10
11 // ......
12
13 // 第二步:初始化 N 个 (初始值200,当连接超过200个的时候会往上递增) conn结构体对象
14 // 空闲连接数组初始化
15 conn_init();
16
17 // ......
18
19
20 // 第三步:启动工作线程
21 /* start up worker threads if MT mode */
22 thread_init(settings.num_threads, main_base);
23
24 // ......
25
26 // 第四步:初始化socket,绑定监听端口,为主线程的事件机制设置连接监听事件(event_set、event_add)
27 /**
28 memcached 有可配置的两种模式: unix 域套接字和 TCP/UDP, 允许客户端以两种方式向 memcached 发起请求. 客户端和服务器在同一个主机上的情况下可以用 unix 域套接字, 否则可以采用 TCP/UDP 的模式. 两种模式是不兼容的.
29 以下的代码便是根据 settings.socketpath 的值来决定启用哪种方式.
30 */
31 /**
32 第一种, unix 域套接字.
33 */
34 /* create unix mode sockets after dropping privileges */
35 if (settings.socketpath != NULL) {
36 errno = 0;
37 if (server_socket_unix(settings.socketpath,settings.access)) {
38 vperror("failed to listen on UNIX socket: %s", settings.socketpath);
39 exit(EX_OSERR);
40 }
41 }
42
43 /**
44 第二种, TCP/UDP.
45 */
46 /* create the listening socket, bind it, and init */
47 if (settings.socketpath == NULL) {
48 const char *portnumber_filename = getenv("MEMCACHED_PORT_FILENAME");
49 char temp_portnumber_filename[PATH_MAX];
50 FILE *portnumber_file = NULL;
51
52 // 读取端口号文件
53 if (portnumber_filename != NULL) {
54 snprintf(temp_portnumber_filename,
55 sizeof(temp_portnumber_filename),
56 "%s.lck", portnumber_filename);
57
58 portnumber_file = fopen(temp_portnumber_filename, "a");
59 if (portnumber_file == NULL) {
60 fprintf(stderr, "Failed to open \"%s\": %s\n",
61 temp_portnumber_filename, strerror(errno));
62 }
63 }
64
65 // TCP
66 errno = 0;
67 if (settings.port && server_sockets(settings.port, tcp_transport,
68 portnumber_file)) {
69 vperror("failed to listen on TCP port %d", settings.port);
70 exit(EX_OSERR);
71 }
72
73 /*
74 * initialization order: first create the listening sockets
75 * (may need root on low ports), then drop root if needed,
76 * then daemonise if needed, then init libevent (in some cases
77 * descriptors created by libevent wouldn't survive forking).
78 */
79
80 // UDP
81 /* create the UDP listening socket and bind it */
82 errno = 0;
83 if (settings.udpport && server_sockets(settings.udpport, udp_transport,
84 portnumber_file)) {
85 vperror("failed to listen on UDP port %d", settings.udpport);
86 exit(EX_OSERR);
87 }
88
89 if (portnumber_file) {
90 fclose(portnumber_file);
91 rename(temp_portnumber_filename, portnumber_filename);
92 }
93 }
94
95 // ......
96
97
98 // 第五步:主线程进入事件循环
99 /* enter the event loop */
100 // 进入事件循环
101 if (event_base_loop(main_base, 0) != 0) {
102 retval = EXIT_FAILURE;
103 }
104
105 // ......
106
107 }
LIBEVENT_THREAD 结构体:
1 // 多个线程, 每个线程一个 event_base
2 typedef struct {
3 pthread_t thread_id; /* unique ID of this thread */
4 struct event_base *base; /* libevent handle this thread uses */
5
6 // event 结构体, 用于管道读写事件的监听
7 struct event notify_event; /* listen event for notify pipe */
8
9 // 读写管道文件描述符
10 int notify_receive_fd; /* receiving end of notify pipe */
11 int notify_send_fd; /* sending end of notify pipe */
12
13 // 线程的状态
14 struct thread_stats stats; /* Stats generated by this thread */
15
16 // 这个线程需要处理的连接队列
17 struct conn_queue *new_conn_queue; /* queue of new connections to handle */
18 cache_t *suffix_cache; /* suffix cache */
19 uint8_t item_lock_type; /* use fine-grained or global item lock */
20 } LIBEVENT_THREAD;
View Code 第三步工作线程的详细启动过程:
1 /*
2 * thread.c
3 *
4 * 初始化线程子系统, 创建工作线程
5 * Initializes the thread subsystem, creating various worker threads.
6 *
7 * nthreads Number of worker event handler threads to spawn
8 * 需准备的线程数
9 * main_base Event base for main thread
10 * 分发线程
11 */
12 void thread_init(int nthreads, struct event_base *main_base) {
13 int i;
14 int power;
15
16 // 互斥量初始化
17 pthread_mutex_init(&cache_lock, NULL);
18 pthread_mutex_init(&stats_lock, NULL);
19
20 pthread_mutex_init(&init_lock, NULL);
21 //条件同步
22 pthread_cond_init(&init_cond, NULL);
23
24 pthread_mutex_init(&cqi_freelist_lock, NULL);
25 cqi_freelist = NULL;
26
27 /* Want a wide lock table, but don't waste memory */
28 if (nthreads < 3) {
29 power = 10;
30 } else if (nthreads < 4) {
31 power = 11;
32 } else if (nthreads < 5) {
33 power = 12;
34 } else {
35 // 2^13
36 /* 8192 buckets, and central locks don't scale much past 5 threads */
37 power = 13;
38 }
39
40 // hashsize = 2^n
41 item_lock_count = hashsize(power);
42
43 item_locks = calloc(item_lock_count, sizeof(pthread_mutex_t));
44 if (! item_locks) {
45 perror("Can't allocate item locks");
46 exit(1);
47 }
48 // 初始化
49 for (i = 0; i < item_lock_count; i++) {
50 pthread_mutex_init(&item_locks, NULL);
51 }
52 //item_lock_type_key设置为线程的私有变量的key
53 pthread_key_create(&item_lock_type_key, NULL);
54 pthread_mutex_init(&item_global_lock, NULL);
55
56
57 // LIBEVENT_THREAD 是结合 libevent 使用的结构体, event_base, 读写管道
58 threads = calloc(nthreads, sizeof(LIBEVENT_THREAD));
59 if (! threads) {
60 perror("Can't allocate thread descriptors");
61 exit(1);
62 }
63
64 // main_base 是分发任务的线程, 即主线程
65 dispatcher_thread.base = main_base;
66 dispatcher_thread.thread_id = pthread_self();
67
68 // 管道, libevent 通知用的
69 // 一个 LIBEVENT_THREAD 结构体对象对应由一条子线程维护
70 // 子线程通过读管道来接收主线程的命令(例如主线程接收到新连接,会往子线程的读管道写入字符'c',子线程接收到命令就会做出相应的处理)
71 for (i = 0; i < nthreads; i++) {
72 int fds[2];
73 if (pipe(fds)) {
74 perror("Can't create notify pipe");
75 exit(1);
76 }
77
78 // 读管道
79 threads.notify_receive_fd = fds[0];
80 // 写管道
81 threads.notify_send_fd = fds[1];
82
83 // 初始化线程信息数据结构, 其中就将 event 结构体的回调函数设置为 thread_libevent_process(),此时线程还没有创建
84 setup_thread(&threads);
85 /* Reserve three fds for the libevent base, and two for the pipe */
86 stats.reserved_fds += 5;
87 }
88
89 /* Create threads after we've done all the libevent setup. */
90 // 创建并初始化线程, 线程的代码都是 work_libevent()
91 for (i = 0; i < nthreads; i++) {
92 // 调用 pthread_attr_init() 和 pthread_create() 来创建子线程
93 // 子线程的函数入口 worker_libevent ,负责启动子线程的事件循环
94 create_worker(worker_libevent, &threads);
95 }
96
97 /* Wait for all the threads to set themselves up before returning. */
98 pthread_mutex_lock(&init_lock);
99 // wait_for_thread_registration() 是 pthread_cond_wait 的调用
100 wait_for_thread_registration(nthreads);
101 pthread_mutex_unlock(&init_lock);
102 }
103
104
105
106
107 /*
108 * Set up a thread's information.
109 */
110 // 填充 LIBEVENT_THREAD 结构体, 其中包括:
111 // 填充 struct event
112 // 初始化线程工作队列
113 // 初始化互斥量
114 // 等
115 static void setup_thread(LIBEVENT_THREAD *me) {
116 // 子线程的事件机制,每条子线程都有一个事件机制
117 me->base = event_init();
118 if (! me->base) {
119 fprintf(stderr, "Can't allocate event base\n");
120 exit(1);
121 }
122
123 /* Listen for notifications from other threads */
124 // 在线程数据结构初始化的时候, 为 me->notify_receive_fd 读管道注册读事件, 回调函数是 thread_libevent_process()
125 // 为子线程的事件机制添加事件
126 event_set(&me->notify_event, me->notify_receive_fd,
127 EV_READ | EV_PERSIST, thread_libevent_process, me);
128 event_base_set(me->base, &me->notify_event);
129
130 if (event_add(&me->notify_event, 0) == -1) {
131 fprintf(stderr, "Can't monitor libevent notify pipe\n");
132 exit(1);
133 }
134
135 // ......
136 }
137
138
139
140 /*
141 * Worker thread: main event loop
142 * 线程函数入口, 启动事件循环
143 */
144 static void *worker_libevent(void *arg) {
145 LIBEVENT_THREAD *me = arg;
146
147 // ......
148
149 // 进入事件循环
150 event_base_loop(me->base, 0);
151 return NULL;
152 }
子线程读管道回调函数:
1 /*
2 * Processes an incoming "handle a new connection" item. This is called when
3 * input arrives on the libevent wakeup pipe.
4 *
5 * 当管道有数据可读的时候会触发此函数的调用
6 */
7 static void thread_libevent_process(int fd, short which, void *arg) {
8 LIBEVENT_THREAD *me = arg;
9 CQ_ITEM *item;
10 char buf[1];
11
12 if (read(fd, buf, 1) != 1)
13 if (settings.verbose > 0)
14 fprintf(stderr, "Can't read from libevent pipe\n");
15
16 switch (buf[0]) {
17 case 'c':
18 // 表示主线程把一个新的连接分发给该子线程处理
19 // 取出一个任务
20 item = cq_pop(me->new_conn_queue);
21
22 if (NULL != item) {
23 // 为新的请求建立一个连接结构体. 连接其实已经建立, 这里只是为了填充连接结构体. 最关键的动作是在 libevent 中注册了事件, 回调函数是 event_handler()
24 conn *c = conn_new(item->sfd, item->init_state, item->event_flags,
25 item->read_buffer_size, item->transport, me->base);
26 if (c == NULL) {
27 if (IS_UDP(item->transport)) {
28 fprintf(stderr, "Can't listen for events on UDP socket\n");
29 exit(1);
30 } else {
31 if (settings.verbose > 0) {
32 fprintf(stderr, "Can't listen for events on fd %d\n",
33 item->sfd);
34 }
35 close(item->sfd);
36 }
37 } else {
38 c->thread = me;
39 }
40 cqi_free(item);
41 }
42 break;
43
44 /* we were told to flip the lock type and report in */
45 case 'l':
46 me->item_lock_type = ITEM_LOCK_GRANULAR;
47 register_thread_initialized();
48 break;
49
50 case 'g':
51 me->item_lock_type = ITEM_LOCK_GLOBAL;
52 register_thread_initialized();
53 break;
54 }
55 }
View Code
第四步主要是初始化socket、绑定服务器端口和IP、为主线程事件机制添加监听连接事件:
1 // memcached.c
2 // server_sockets()->server_socket()
3
4 static int server_socket(const char *interface,
5 int port,
6 enum network_transport transport,
7 FILE *portnumber_file) {
8
9 // ......
10
11 // getaddrinfo函数能够处理名字到地址以及服务到端口这两种转换,返回的是一个addrinfo的结构(列表)指针而不是一个地址清单。
12 error= getaddrinfo(interface, port_buf, &hints, &ai);
13
14 if (error != 0) {
15 if (error != EAI_SYSTEM)
16 fprintf(stderr, "getaddrinfo(): %s\n", gai_strerror(error));
17 else
18 perror("getaddrinfo()");
19 return 1;
20 }
21
22 for (next= ai; next; next= next->ai_next) {
23 conn *listen_conn_add;
24
25 // new_socket() 申请了一个 UNIX 域套接字,通过调用socket()方法创建套接字,并设置把套接字为非阻塞
26 if ((sfd = new_socket(next)) == -1) {
27
28 // ......
29
30 }// if
31
32
33 // ......
34
35
36 // bind() 绑定源IP的端口
37 if (bind(sfd, next->ai_addr, next->ai_addrlen) == -1) {
38
39 // ......
40
41 } else {
42 success++;
43 // bind()调用成功后,调用listen()
44 if (!IS_UDP(transport) && listen(sfd, settings.backlog) == -1) {
45
46 // ......
47
48 }
49
50 // ......
51
52 }
53
54 // UDP 和 TCP 区分对待, UDP 没有连接概念, 只要绑定服务器之后, 直接读取 socket 就好了, 所以与它对应 conn 的初始状态应该为 conn_read; 而 TCP 对应的 conn 初始状态应该为 conn_listening
55 if (IS_UDP(transport)) {
56 // UDP
57 int c;
58
59 for (c = 0; c < settings.num_threads_per_udp; c++) {
60 /* this is guaranteed to hit all threads because we round-robin */
61 // 分发新的连接到线程池中的一个线程中
62 dispatch_conn_new(sfd, conn_read, EV_READ | EV_PERSIST,
63 UDP_READ_BUFFER_SIZE, transport);
64 }
65 } else {
66 // TCP 要建立连接
67 if (!(listen_conn_add = conn_new(sfd, conn_listening,
68 EV_READ | EV_PERSIST, 1,
69 transport, main_base))) {
70 fprintf(stderr, "failed to create listening connection\n");
71 exit(EXIT_FAILURE);
72 }
73
74 // 放在头部, listen_conn 是头指针
75 listen_conn_add->next = listen_conn;
76 listen_conn = listen_conn_add;
77 }
78 }
79
80 freeaddrinfo(ai);
81
82 /* Return zero iff we detected no errors in starting up connections */
83 return success == 0;
84 }
85
86
87
88
89 // 填写 struct conn 结构体, 包括 struct conn 中的 event 结构, 并返回
90 conn *conn_new(const int sfd, enum conn_states init_state,
91 const int event_flags,
92 const int read_buffer_size, enum network_transport transport,
93 struct event_base *base) {
94 // c 指向一个新的 conn 空间
95 // 可能是出于性能的考虑, memcached 预分配了若干个 struct conn 空间
96 {
97 /* data */
98 };
99 conn *c = conn_from_freelist();
100
101 if (NULL == c) {
102 // 可能分配失败了, 因为默认数量有限. 进行新的扩展,conn_init()中初始数量是200
103 if (!(c = (conn *)calloc(1, sizeof(conn)))) {
104 fprintf(stderr, "calloc()\n");
105 return NULL;
106 }
107
108 // ......
109 // 填充conn结构体
110
111 }// if
112
113
114 // ......
115
116
117 // libevent 操作: 设置事件, 设置回调函数 event_handler()
118 event_set(&c->event, sfd, event_flags, event_handler, (void *)c);
119
120 // libevent 操作:设置 c->event 的 event_base
121 event_base_set(base, &c->event);
122
123 c->ev_flags = event_flags;
124
125 // libevent 操作: 添加事件
126 if (event_add(&c->event, 0) == -1) {
127
128 // ......
129
130 }
131
132
133 // ......
134
135
136 return c;
137 }
|
|