设为首页 收藏本站
查看: 1189|回复: 0

[经验分享] HDFS Scribe Integration 【转】

[复制链接]

尚未签到

发表于 2015-9-17 09:53:48 | 显示全部楼层 |阅读模式
  It is finally here: you can configure the open source log-aggregator, scribe, to log data directly into the Hadoop distributed file system.
  Many Web 2.0 companies have to deploy a bunch of costly filers to capture weblogs being generated by their application. Currently, there is no option other than a costly filer because the write-rate for this stream is huge. The Hadoop-Scribe integration allows this write-load to be distributed among a bunch of commodity machines, thus reducing the total cost of this infrastructure.
  The challenge was to make HDFS be real-timeish in behaviour. Scribe uses libhdfs which is the C-interface to the HDFs client. There were various bugs in libhdfs that needed to be solved first. Then came the FileSystem API. One of the major issues was that the FileSystem API caches FileSystem handles and always returned the same FileSystem handle when called from multiple threads. There was no reference counting of the handle. This caused problems with scribe, because Scribe is highly multi-threaded. A new API FileSystem.newInstance() was introduced to support Scribe.
  Making the HDFS write code path more real-time was painful. There are various timeouts/settings in HDFS that were hardcoded and needed to be changed to allow the application to fail fast. At the bottom of this blog-post, I am attaching the settings that we have currently configured to make the HDFS-write very real-timeish. The last of the JIRAS, HADOOP-2757 is in the pipeline to be committed to Hadoop trunk very soon.
  What about Namenode being the single point of failure? This is acceptable in a warehouse type of application but cannot be tolerated by a realtime application. Scribe typically aggregates click-logs from a bunch of webservers, and losing *all* click log data of a website for a 10 minutes or so (minimum time for a namenode restart) cannot be tolerated. The solution is to configure two overlapping clusters on the same hardware. Run two separate namenodes N1 and N2 on two different machines. Run one set of datanode software on all slave machines that report to N1 and the other set of datanode software on the same set of slave machines that report to N2. The two datanode instances on a single slave machine share the same data directories. This configuration allows HDFS to be highly available for writes!
  The highly-available-for-writes-HDFS configuration is also required for software upgrades on the cluster. We can shutdown one of the overlapping HDFS clusters, upgrade it to new hadoop software, and then put it back online before starting the same process for the second HDFS cluster.
  What are the main changes to scribe that were needed? Scribe already had the feature that it buffers data when it is unable to write to the configured storage. The default scribe behaviour is to replay this buffer back to the storage when the storage is back online. Scribe is configured to support no-buffer-replay when the primary storage is back online. Scribe-hdfs is configured to write data to a cluster N1 and if N1 fails then it writes data to cluster N2. Scribe treats N1 and N2 as two equivalent primary stores.
  转自:http://hadoopblog.blogspot.hk/2009/06/hdfs-scribe-integration.html

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-114794-1-1.html 上篇帖子: 【Oauth认证】使用scribe实现OAUTH 下篇帖子: 安装Thrift+Scribe
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表