|
转自:http://www.kaixinwenda.com/article-luo_brian-8454002.html
中断,这个概念相信大家已经不陌生了,我也没什么资格来介绍中断,就简单的说一下。我认为它从宏观上看可以分为软件部分和硬件部分。
软件部分:
软件部分在操作系统中实现,如Linux中断的x86,每一个中断对应一个中断门,中断门中包含中断处理函数(ISR或者别的)地址,优先级等等。CPU可以通过LIDT加载这个描述符表,跳转到指定的中断门。
硬件部分:
中断硬件部分就是产生中断脉冲,传给中断控制器,然后通知CPU,CPU在执行下调指令前会去查询中断情况,如果有中断信号,就执行中断。我们在这里模拟的就是硬件部分内容。
因此中断的模拟按照我的理解可以分为两个主要部分,一个是中断源的模拟,一个是给虚拟机的VCPU响应中断。
中断源模拟:
中断源模拟我也不是很清楚,方法很多,可以直接响应Linux的驱动,也可以别的,比如时钟中断可以设置一个定时器,定时器到了就触发中断,但是键盘,鼠标,硬盘呢?这个等待高手回?欢迎大家来讨论。
虚拟机响应虚拟中断:
KVM中断虚拟化主要依赖于VT-x技术,VT-x主要提供了两种中断事件机制,分别是中断退出和中断注入。
中断退出
是指虚拟机发生中断时,主动使得客户机发生VM-exit,这样能够在主机中实现对客户机中断的注入。
中断注入
它是指将中断写入VMCS对应的中断信息位,来实现中断的注入,当中断完成后通过读取中断的返回信息来分析中断是否正确。这个也是这里要详细将的地方。
首先中断注入有个一个标志性的函数 kvm_set_irq,这个是中断注入的最开始。
中断退出和注入是个关系紧密的过程,一先一后,我们放在一起来讲解,下面来分析一下KVM-KMOD-2.6.36相关实现代码,首先从kvm_set_irq开始。
函数位置: x86/irq_comm.c/
函数参数: kvm,发生中断的客户机的结构体指针,我们知道在KVM模块中有个vmlist,链接了所有注册的虚拟机,当多次使用QEMU命令以后会产生多个虚拟机,不同虚拟机中公用一个KVM模块,通过这个kvm结构体来辨识是哪个虚拟机,当然每个虚拟机里面可以对应多个VCPU,别把这个概念弄混淆了;irq_source_id中断资源ID,对于KVM设备我们都会申请一个中断资源ID,注册KVMIO设备时申请的;irq中断请求号,这个是转化GSI之前的,比如时钟是0号,这里就是0,而不是32;level表示中断的高低电平。
int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, intlevel)
{
struct kvm_kernel_irq_routing_entry *e,irq_set[KVM_NR_IRQCHIPS];
struct kvm_irq_routing_table *irq_rt;
......
if (irq < irq_rt->nr_rt_entries)
r = irq_set.set(&irq_set, kvm, irq_source_id, level);
if (r < 0)
continue;
ret = r + ((ret < 0) ? 0 : ret);
}
return ret;
}
安装中断路由函数主要在setup_routing_entry中。
int setup_routing_entry(struct kvm_irq_routing_table *rt, structkvm_kernel_irq_routing_entry *e, const struct kvm_irq_routing_entry*ue)
{
struct kvm_kernel_irq_routing_entry *ei;
struct hlist_node *n
… …
switch (ue->type) {
case KVM_IRQ_ROUTING_IRQCHIP:
delta = 0;
switch (ue->u.irqchip.irqchip) {
case KVM_IRQCHIP_PIC_MASTER:
e->set = kvm_set_pic_irq;
max_pin = 16;
......
case KVM_IRQCHIP_IOAPIC:
max_pin = KVM_IOAPIC_NUM_PINS;
e->set = kvm_set_ioapic_irq;
... ...
}
case KVM_IRQ_ROUTING_MSI:
e->set = kvm_set_msi;
......
}
pent = &ioapic->redirtbl[idx];
if (!pent->fields.mask) {
injected = ioapic_deliver(ioapic, idx);
if (injected && pent->fields.trig_mode ==IOAPIC_LEVEL_TRIG)
pent->fields.remote_irr = 1;
}
return injected;
}
然后来看下LAPIC如何接收中断,主要是在函数__apic_accept_irq中,这里就是将中断写入当前触发VCPU的kvm_lapic结构体中的相应位置。
位置:x86/lapic.c
static int __apic_accept_irq(struct kvm_lapic *apic, intdelivery_mode,
int vector, int level, int trig_mode)
{
int result = 0;
struct kvm_vcpu *vcpu = apic->vcpu;
switch (delivery_mode) {
case APIC_DM_LOWEST:
vcpu->arch.apic_arb_prio++;
case APIC_DM_FIXED:
......
if (trig_mode) {
apic_set_vector(vector, apic->regs + APIC_TMR);
} else
apic_clear_vector(vector, apic->regs + APIC_TMR);
result = !apic_test_and_set_irr(vector, apic);
......
kvm_vcpu_kick(vcpu);
break;
… …
}
return result;
}
对于MSI来说
就是将irq消息解析,然后构造发送给VCPU的LAPIC,后面和IOAPIC的相同。
kvm_set_msi -> kvm_irq_delivery_to_apic -> kvm_apic_set_irq-> __apic_accept_irq
这样我们就大概讲解了三种中断触发方式的实现,具体的可以参见详细代码。这里要注意,CPU主循环和中断注入是两个并行的过程,所以CPU处于任何状态都能进行设置中断,设置中断以后,就会引起中断退出(最后一点是个人意见,可能不正确,应该是要写到vmcs位)。另外来自QEMU的中断注入也是调用这个循环,所以在QEMU中的中断和CPU循环也是并行执行。
当我们设置好虚拟中断控制器以后,接着在KVM_RUN退出以后,就开始遍历这些虚拟中断控制器,如果发现中断,就将中断写入中断信息位,实现如下:
inject_pending_event在进入guest之前被调用。
位置:86/x86.c
参数:发生退出的虚拟cpu结构体
注意这里将NMI,exception的注入过程都注释掉了,同理。
static void inject_pending_event(struct kvm_vcpu *vcpu)
{
… …
if (vcpu->arch.interrupt.pending) {
kvm_x86_ops->set_irq(vcpu);
return;
}
… …
if (vcpu->arch.nmi_pending) {
|
|