设为首页 收藏本站
查看: 1083|回复: 0

Hadoop源代码的边角料:HDFS的数据通信机制

[复制链接]

尚未签到

发表于 2015-11-11 13:07:54 | 显示全部楼层 |阅读模式
  这阵子花了点时间读了读HDFS的源代码。有所得。
不过网上关于Hadoop源代码的解析已经挺多了,所以自称为“边角料”,也就是一些零散的心得和想法。

  
  简单而言,HDFS分为了三个部分:
NameNode,处于master的地位,维护了数据在DataNode上的分布情况,并且,还要负责一些调度任务;
DataNode,存储真实数据的地方;
DFSClient,一个client端,通过它提供的接口访问NameNode和DataNode;
三者之间的通信全部是基于TCP/Socket; 如图所示:
DSC0000.gif
  
  图中,连线表示两者之间存在通信,箭头一方表示接收请求,没有箭头的一端表示发起请求的一方;图中的黑色细线表示控制消息的通路,红色粗线表示数据消息的通路;

可以看得出来,NameNode是一个典型的Server端程序,它总是处于接受请求,返回响应的状态中。NameNode永远不会主动的向其它组件发起请求(依稀记得GFS的论文中也是这样做的)。如果NameNode需要向DataNode发送一些调度或者控制命令的话,必须等待DataNode向NameNode发送heartbeat之后,作为heartbeat的response返回给DataNode。
DataNode就比较忙了,它不仅需要定时的发送heartbeat给NameNode,并且heartbeat的返回往往还附带了很多的控制消息需要处理,同时,DataNode要接收DFSClient来的读写数据的请求和一些控制请求,最后,DataNode之间还有数据消息和控制消息的传输。
  
  HDFS中很有意思的一点是,它的控制消息的传输和数据消息的传输采用的是不一样的模块。这也是接下来我想探讨的重点。
  
  HDFS中所有的控制消息的传输都基于它自实现的RPC模块。之前的一篇blog介绍过这个RPC的实现,这里简单回顾一下:
RPC模块会对两个需要通信的Node之间各创建一个socket,这两个Node之间的所有的控制消息都通过这对socket进行传输;对于RPC的client一端来说,会有两个线程参与到这个过程中。一个线程是调用本次RPC的线程,它会将消息写入到socket中,然后就执行wait()阻塞住;另一个线程则是RPC模块内部负责该socket读的工作,它从socket中读取消息,然后执行notify()唤醒阻塞线程;
我在之前的blog中就提到,这个机制不太适合大数据量的传输,因为两个Node之间只用一个socket进行通信,网络的吞吐量不一定上得去。
  
  而事实上,HDFS确实没有用RPC机制传输数据消息。当HDFS中的DFSClient对DataNode上保存的文件数据进行读写的时候,它其实采用了另外一个机制,简单介绍一下:
  每个DataNode在启动的时候会创建一个线程DataXceiverServer来专门负责block数据的读写的链接。而DataXceiverServer做的事情很简单 --一旦有一个连接,就创建一个新的DataXceiver来处理这个连接:
  public void run() {while (datanode.shouldRun) {try {Socket s = ss.accept();s.setTcpNoDelay(true);new Daemon(datanode.threadGroup, new DataXceiver(s, datanode, this)).start();} catch (SocketTimeoutException ignored) {// wake up to see if should continue to run} catch (IOException ie) {// ............} catch (Throwable te) {// ............}}try {ss.close();} catch (IOException ie) {// .......}}
  DataXceiver也是一个线程,它负责处理对应的一个连接,主要完成4种任务:
opReadBlock: 读取一个block
opWriteBlock: 写一个block到disk上
opCopyBlock: 读一个block,然后送到指定的目的地
opReplaceBlock: 替换一个block
class DataXceiver extends DataTransferProtocol.Receiverimplements Runnable, FSConstants {// ................/*** Read/write data from/to the DataXceiveServer.*/public void run() {updateCurrentThreadName("Waiting for operation");DataInputStream in=null; try {in = new DataInputStream(new BufferedInputStream(NetUtils.getInputStream(s), SMALL_BUFFER_SIZE));final DataTransferProtocol.Op op = readOp(in);// Make sure the xciver count is not exceeded// ....processOp(op, in);} catch (Throwable t) {LOG.error(datanode.dnRegistration + ":DataXceiver",t);} finally {//.....}}/** Process op by the corresponding method. */protected final void processOp(Op op, DataInputStream in) throws IOException {switch(op) {case READ_BLOCK:opReadBlock(in);break;case WRITE_BLOCK:opWriteBlock(in);break;case REPLACE_BLOCK:opReplaceBlock(in);break;case COPY_BLOCK:opCopyBlock(in);break;case BLOCK_CHECKSUM:opBlockChecksum(in);break;default:throw new IOException("Unknown op " + op + " in data stream");}}
  所以,当HDFS进行数据传输的时候,对于每一个链接创建一个thread进行处理,这样,如果两个Node之间的数据传输很频繁的话,那么有可能会创建多个链接,吞吐量就上去了。
  
  如果熟悉network server architecture的话,很容易知道HDFS在这里采用的是one thread per request的模型。它没有采用当下流行的基于epoll的event-driven architecture,甚至于,它都没有采用thread pool的方式,而是使用了一种“很土很土”的模型。众所周知,one thread per request模型一个很明显的缺陷在于如果访问的并发数太高,可能产生大量的thread而导致thread间的context swith开销过大。
我个人想法,HDFS之所以采用这样的一个模型,一方面是编程上比较简单,另一个方面,可能是开发人员认为HDFS这样的一个系统并不容易出现高并发的访问。从图中看,需要和DataNode进行数据消息交互的模块有两个:一个是DFSClient,一个是其它的DataNode。
先说后者,DataNode与DataNode之间的数据消息交互只发生在一种情况下,就是某个DFSClient对block进行了写操作,那么被写的DataNode需要将这些数据复制到这个block副本所在的其它DataNode上。是一种链式结构:
    DFSClient  -->DataNode A -->DataNode B --> DataNode C
所以,DataNode之间的链接是与DFSClient和DataNode之间的链接一一对应的。
再说DFSClient,它并不同于Web Server所要面对的client。Web Serve的client是终端的浏览器,可能成千上万,这是不可控的。而DFSClient是系统内的client,它的数量不会太多(就好比是对Database的连接数,是开发人员控制的,所以不会太大)。由于DFSClient在系统内部的数量不会太多,所以DataNode从DFSClient过来的连接也就不会太多。既然DFSClient发起的连接不多,那么DataNode之间的连接也不会多。
结合以上二点,整个HDFS很难产生高并发的情况,所以采用one thread per request的架构也就说得过去了。
  
  -- END --
  
             版权声明:本文为博主原创文章,未经博主允许不得转载。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-137915-1-1.html 上篇帖子: Hadoop之数据仓库构建-Hive 下篇帖子: Hadoop源码分析之NameNode的启动与停止
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表