HBase是什么?
hbase是以列为中心的数据库,而传统关系数据库则是以行为中心的数据库。不过hbase这个列并非我们传统意义的列,而是列族。列族是hbase最小的存储单位,换句话说hbase底层数据都是以列族来进行组织的。
Hbase是基于hadoop(hdfs)的分布式数据库系统;
HBase是典型的key/value系统;
hbase是是建立的hdfs之上,提供高可靠性、高性能、列存储、可伸缩、实时读写的数据库系统。
它介于nosql和RDBMS之间,仅能通过主键(rowkey)和主键的range来检索数据,仅支持单行事务(可通过hive支持来实现多表join等复杂操作)。主要用来存储非结构化和半结构化的松散数据。
与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。
原理图:
Hbase表的特点
大:一个表可以有数十亿行,上百万列;
无模式:每行都有一个可排序的主键和任意多的列,列可以根据需要动态的增加,同一张表中不同的行可以有截然不同的列;
面向列:面向列(族)的存储和权限控制,列(族)独立检索;
稀疏:空(null)列并不占用存储空间,表可以设计的非常稀疏;
数据多版本:每个单元中的数据可以有多个版本,默认情况下版本号自动分配,是单元格插入时的时间戳;
数据类型单一:Hbase中的数据都是字符串,没有类型。
Hbase基本概念 RowKey:是Byte array,是表中每条记录的“主键”,方便快速查找,Rowkey的设计非常重要。
Column Family:列族,拥有一个名称(string),包含一个或者多个相关列
Column:属于某一个columnfamily,familyName:columnName,每条记录可动态添加
Version Number:类型为Long,默认值是系统时间戳,可由用户自定义
Value(Cell):Byte array Hbase物理模型
每个column family存储在HDFS上的一个单独文件中,空值不会被保存。
Key 和 Version number在每个 column family中均有一份;
HBase 为每个值维护了多级索引,即:<key, column family, column name, timestamp>
物理存储:
1、Table中所有行都按照row key的字典序排列;
2、Table在行的方向上分割为多个Region;
3、Region按大小分割的,每个表开始只有一个region,随着数据增多,region不断增大,当增大到一个阀值的时候,region就会等分会两个新的region,之后会有越来越多的region;
4、Region是Hbase中分布式存储和负载均衡的最小单元,不同Region分布到不同RegionServer上。
5、Region虽然是分布式存储的最小单元,但并不是存储的最小单元。Region由一个或者多个Store组成,每个store保存一个columns family;每个Strore又由一个memStore和0至多个StoreFile组成,StoreFile包含HFile;memStore存储在内存中,StoreFile存储在HDFS上。
HBase架构及基本组件
Hbase基本组件说明: Client 包含访问HBase的接口,并维护cache来加快对HBase的访问,比如region的位置信息 Master 为Region server分配region 负责Region server的负载均衡 发现失效的Region server并重新分配其上的region 管理用户对table的增删改查操作 Region Server Regionserver维护region,处理对这些region的IO请求 Regionserver负责切分在运行过程中变得过大的region Zookeeper作用 通过选举,保证任何时候,集群中只有一个master,Master与RegionServers 启动时会向ZooKeeper注册 存贮所有Region的寻址入口 实时监控Region server的上线和下线信息。并实时通知给Master 存储HBase的schema和table元数据 默认情况下,HBase 管理ZooKeeper 实例,比如, 启动或者停止ZooKeeper
Zookeeper的引入使得Master不再是单点故障
该机制用于数据的容错和恢复: 每个HRegionServer中都有一个HLog对象,HLog是一个实现Write Ahead Log的类,在每次用户操作写入MemStore的同时,也会写一份数据到HLog文件中(HLog文件格式见后续),HLog文件定期会滚动出新的,并删除旧的文件(已持久化到StoreFile中的数据)。当HRegionServer意外终止后,HMaster会通过Zookeeper感知到,HMaster首先会处理遗留的 HLog文件,将其中不同Region的Log数据进行拆分,分别放到相应region的目录下,然后再将失效的region重新分配,领取 到这些region的HRegionServer在Load Region的过程中,会发现有历史HLog需要处理,因此会Replay HLog中的数据到MemStore中,然后flush到StoreFiles,完成数据恢复 HBase容错性
Master容错:Zookeeper重新选择一个新的Master
无Master过程中,数据读取仍照常进行;
无master过程中,region切分、负载均衡等无法进行;
RegionServer容错:定时向Zookeeper汇报心跳,如果一旦时间内未出现心跳,Master将该RegionServer上的Region重新分配到其他RegionServer上,失效服务器上“预写”日志由主服务器进行分割并派送给新的RegionServer
Zookeeper容错:Zookeeper是一个可靠地服务,一般配置3或5个Zookeeper实例
Region定位流程:
Client访问用户数据之前需要首先访问zookeeper,然后访问-ROOT-表,接着访问.META.表,最后才能找到用户数据的位置去访问,
寻找RegionServer
ZooKeeper--> -ROOT-(单Region)--> .META.--> 用户表
-ROOT-
表包含.META.表所在的region列表,该表只会有一个Region;
Zookeeper中记录了-ROOT-表的location。 .META.
表包含所有的用户空间region列表,以及RegionServer的服务器地址。 storing large amounts of data(100s of TBs)
need high write throughput
need efficient random access(key lookups) within large data sets
need to scale gracefully with data
for structured and semi-structured data
don't need fullRDMS capabilities(cross row/cross table transaction, joins,etc.)
大数据量存储,大数据量高并发操作 需要对数据随机读写操作 读写访问均是非常简单的操作 两者都具有良好的容错性和扩展性,都可以扩展到成百上千个节点;
HDFS适合批处理场景
不支持数据随机查找
不适合增量数据处理
不支持数据更新
|