设为首页 收藏本站
查看: 675|回复: 0

[经验分享] SQL性能优化调整的几点基础事项_oracle

[复制链接]
YunVN网友  发表于 2016-8-15 07:32:54 |阅读模式
  1. 选择最有效率的表名顺序
SQL的解析器按照从右到左的顺序处理FROM子句中的表名, FROM子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表。

例如:
表 TAB1 16,384条记录 表 TAB2 1条记录
选择TAB2作为基础表 (最好的方法):
select count(*) from tab1,tab2 ----执行时间0.96秒
选择TAB1作为基础表 (不佳的方法):
select count(*) from tab2,tab1 ----执行时间26.09秒

  
  
  2. 3个以上的表连接查询
如果有3个以上的表连接查询, 那就需要选择交叉表(intersection table)作为基础表, 交叉表是指那个被其他表所引用的表。

  例如:
EMP表描述了LOCATION表和CATEGORY表的交集
SELECT *FROM LOCATION L , CATEGORY C, EMP E
WHERE E.EMP_NO BETWEEN 1000 AND 2000
AND E.CAT_NO = C.CAT_NO
AND E.LOCN = L.LOCN

  
  3. WHERE子句中的连接顺序
   ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前, 那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾.
  例如:
(低效,执行时间156.3秒)
SELECT … FROM EMP E
WHERE SAL > 50000
AND JOB = ‘MANAGER’
AND 25 < (SELECT COUNT(*) FROM EMP
WHERE MGR=E.EMPNO);

  (高效,执行时间10.6秒)
SELECT …
FROM EMP E
WHERE 25 < (SELECT COUNT(*) FROM EMP
WHERE MGR=E.EMPNO)
AND SAL > 50000
AND JOB = ‘MANAGER’;

  
  4. 使用oracle自带函数提高效率
使用DECODE函数来减少处理时间,可以避免重复扫描相同记录或重复连接相同的表.

  例如:
SELECT COUNT(*),SUM(SAL)
FROM EMP
WHERE DEPT_NO = 0020
AND ENAME LIKE ‘SMITH%’;
SELECT COUNT(*),SUM(SAL)
FROM EMP
WHERE DEPT_NO = 0030
AND ENAME LIKE ‘SMITH%’;

  你可以用DECODE函数高效地得到相同结果:
SELECT COUNT(DECODE(DEPT_NO,0020,’X’,NULL)) D0020_COUNT,
COUNT(DECODE(DEPT_NO,0030,’X’,NULL)) D0030_COUNT,
SUM(DECODE(DEPT_NO,0020,SAL,NULL)) D0020_SAL,
SUM(DECODE(DEPT_NO,0030,SAL,NULL)) D0030_SAL
FROM EMP WHERE ENAME LIKE ‘SMITH%’;

  
  5. 用Where子句替换HAVING子句
避免使用HAVING子句, HAVING 只会在检索出所有记录之后才对结果集进行过滤. 这个处理需要排序,总计等操作. 如果能通过WHERE子句限制记录的数目,那就能减少这方面的开销。

HAVING 中的条件一般用于对一些集合函数的比较,如COUNT() 等等. 除此而外,一般的条件应该写在WHERE子句中

  
  6. 使用表的别名(Alias)
当在SQL语句中连接多个表时, 请使用表的别名并把别名前缀于每个Column上.这样一来,就可以减少解析的时间并减少那些由Column歧义引起的语法错误.
Column歧义指的是由于SQL中不同的表具有相同的Column名,当SQL语句中出现这个Column时,SQL解析器无法判断这个Column的归属.

  
  7. 用表连接替换EXISTS
SELECT ENAME
FROM EMP E
WHERE EXISTS (SELECT ‘X’
FROM DEPT
WHERE DEPT_NO = E.DEPT_NO
AND
DEPT_CAT = ‘A’);

  (更高效的方法)
SELECT ENAME
FROM DEPT D,
EMP E
WHERE
E.DEPT_NO = D.DEPT_NO
AND
DEPT_CAT = ‘A’ ;

  
  8. 识别’低效执行’的SQL语句
使用TKPROF 工具来查询SQL性能状态
SQL trace 工具收集正在执行的SQL的性能状态数据并记录到一个跟踪文件中. 这个跟踪文件提供了许多有用的信息,例如解析次数.执行次数,CPU使用时间等.这些数据将可以用来优化你的系统。
EXPLAIN PLAN 分析SQL语句:
EXPLAIN PLAN 是一个很好的分析SQL语句的工具,它甚至可以在不执行SQL的情况下分析语句. 通过分析,我们就可以知道ORACLE是怎么样连接表,使用什么方式扫描表(索引扫描或全表扫描)以及使用到的索引名称。

  
  9. 用索引提高效率
索引是表的一个概念部分,用来提高检索数据的效率. 实际上,ORACLE使用了一个复杂的自平衡B-tree结构. 通常,通过索引查询数据比全表扫描要快. 当ORACLE找出执行查询和Update语句的最佳路径时, ORACLE优化器将使用索引. 同样在联结多个表时使用索引也可以提高效率. 另一个使用索引的好处是,它提供了主键(primary key)的唯一性验证.

  
虽然使用索引能得到查询效率的提高,但是我们也必须注意到它的代价. 索引需要空间来存储,也需要定期维护, 每当有记录在表中增减或索引列被修改时, 索引本身也会被修改. 这意味着每条记录的INSERT , DELETE , UPDATE将为此多付出4 , 5 次的磁盘I/O . 因为索引需要额外的存储空间和处理,那些不必要的索引反而会使查询反应时间变慢.

  
  10. 用>=替代>
两者的区别在于, 前者DBMS将直接跳到第一个DEPT等于4的记录而后者将首先定位到DEPTNO=3的记录并且向前扫描到第一个DEPT大于3的记录
例如:
高效:
SELECT *
FROM EMP
WHERE DEPTNO >=4

  低效:
SELECT *
FROM EMP
WHERE DEPTNO >3

  
  11. 用UNION替换OR (适用于索引列)
通常情况下, 用UNION替换WHERE子句中的OR将会起到较好的效果. 对索引列使用OR将造成全表扫描. 注意, 以上规则只针对多个索引列有效. 如果有column没有被索引, 查询效率可能会因为你没有选择OR而降低
例如:
高效:
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE LOC_ID = 10
UNION
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE REGION = “MELBOURNE”

  低效:
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE LOC_ID = 10 OR REGION = “MELBOURNE”

  
  

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-257995-1-1.html 上篇帖子: oracle 用户权限、profile及角色的管理 下篇帖子: 手工Oracle注入某足彩在线网站
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表