设为首页 收藏本站
查看: 660|回复: 0

[经验分享] SQL Server 排序函数 ROW_NUMBER和RANK 用法总结

[复制链接]

尚未签到

发表于 2016-11-5 07:43:37 | 显示全部楼层 |阅读模式
  下面的例子和SQL语句均在SQL Server 2008环境下运行通过,使用SQL Server自带的AdventureWorks数据库。
  转载请注明此文原创自
  CSDN TJVictor的专栏:http://blog.csdn.net/tjvictor/archive/2009/07/08/4331039.aspx
  1.ROW_NUMBER()基本用法:
  SELECT
SalesOrderID,
CustomerID,
ROW_NUMBER() OVER (ORDER BY SalesOrderID) AS RowNumber
FROM Sales.SalesOrderHeader
结果集:
SalesOrderID CustomerID RowNumber
--------------- ------------- ---------------
43659 676 1
43660 117 2
43661 442 3
43662 227 4
43663 510 5
43664 397 6
43665 146 7
43666 511 8
43667 646 9
:

2.RANK()基本用法:
  SELECT
SalesOrderID,
CustomerID,
RANK() OVER (ORDER BY CustomerID) AS Rank
FROM Sales.SalesOrderHeader
结果集:
SalesOrderID CustomerID Rank
--------------- ------------- ----------------
43860 1 1
44501 1 1
45283 1 1
46042 1 1
46976 2 5
47997 2 5
49054 2 5
50216 2 5
51728 2 5
57044 2 5
63198 2 5
69488 2 5
44124 3 13
:

3.利用CTE来过滤ROW_NUMBER()的用法:
  WITH NumberedRows AS
(
SELECT
SalesOrderID,
CustomerID,
ROW_NUMBER() OVER (ORDER BY SalesOrderID) AS RowNumber
FROM Sales.SalesOrderHeader
)
  SELECT * FROM NumberedRows
WHERE RowNumber BETWEEN 100 AND 200
结果集:
  SalesOrderID CustomerID RowNumber
--------------- ------------- --------------
43759 13257 100
43760 16352 101
43761 16493 102
:
43857 533 199
43858 36 200

4.带Group by的ROW_NUMBER()用法:
  WITH CustomerSum
AS
(
SELECT CustomerID, SUM(TotalDue) AS TotalAmt
FROM Sales.SalesOrderHeader
GROUP BY CustomerID
)
SELECT
*,
ROW_NUMBER() OVER (ORDER BY TotalAmt DESC) AS RowNumber
FROM CustomerSum
结果集:
CustomerID TotalAmt RowNumber
------------- --------------- ---------------
678 1179857.4657 1
697 1179475.8399 2
170 1134747.4413 3
328 1084439.0265 4
514 1074154.3035 5
155 1045197.0498 6
72 1005539.7181 7
:

5.ROW_NUMBER()或是RANK()聚合用法:
  WITH CustomerSum AS
(
SELECT CustomerID, SUM(TotalDue) AS TotalAmt
FROM Sales.SalesOrderHeader
GROUP BY CustomerID
)
SELECT *,
RANK() OVER (ORDER BY TotalAmt DESC) AS Rank
--或者是ROW_NUMBER() OVER (ORDER BY TotalAmt DESC) AS Row_Number
FROM CustomerSum
RANK()的结果集:
CustomerID TotalAmt Rank
----------- --------------------- --------------------
678 1179857.4657 1
697 1179475.8399 2
170 1134747.4413 3
328 1084439.0265 4
514 1074154.3035 5
:

6.DENSE_RANK()基本用法:
  SELECT
SalesOrderID,
CustomerID,
DENSE_RANK() OVER (ORDER BY CustomerID) AS DenseRank
FROM Sales.SalesOrderHeader
WHERE CustomerID > 100
结果集:
SalesOrderID CustomerID DenseRank
------------ ----------- --------------------
46950 101 1
47979 101 1
49048 101 1
50200 101 1
51700 101 1
57022 101 1
63138 101 1
69400 101 1
43855 102 2
44498 102 2
45280 102 2
46038 102 2
46951 102 2
47978 102 2
49103 102 2
50199 102 2
51733 103 3
57058 103 3
:
  7.RANK()与DENSE_RANK()的比较:
  WITH CustomerSum AS
(
SELECT
CustomerID,
ROUND(CONVERT(int, SUM(TotalDue)) / 100, 8) * 100 AS TotalAmt
FROM Sales.SalesOrderHeader
GROUP BY CustomerID
)
SELECT *,
RANK() OVER (ORDER BY TotalAmt DESC) AS Rank,
DENSE_RANK() OVER (ORDER BY TotalAmt DESC) AS DenseRank
FROM CustomerSum
结果集:
CustomerID TotalAmt Rank DenseRank
----------- ----------- ------- --------------------
697 1272500 1 1
678 1179800 2 2
170 1134700 3 3
328 1084400 4 4
:
87 213300 170 170
667 210600 171 171
196 207700 172 172
451 206100 173 173
672 206100 173 173
27 205200 175 174
687 205200 175 174
163 204000 177 175
102 203900 178 176
:
  8.NTILE()基本用法:
  SELECT
SalesOrderID,
CustomerID,
NTILE(10000) OVER (ORDER BY CustomerID) AS NTile
FROM Sales.SalesOrderHeader
结果集:
SalesOrderID CustomerID NTile
--------------- ------------- ---------------
43860 1 1
44501 1 1
45283 1 1
46042 1 1
46976 2 2
47997 2 2
49054 2 2
50216 2 2
51728 2 3
57044 2 3
63198 2 3
69488 2 3
44124 3 4
:
45024 29475 9998
45199 29476 9998
60449 29477 9998
60955 29478 9999
49617 29479 9999
62341 29480 9999
45427 29481 10000
49746 29482 10000
49665 29483 10000
  9.所有排序方法对比:
  SELECT
SalesOrderID AS OrderID,
CustomerID,
ROW_NUMBER() OVER (ORDER BY CustomerID) AS RowNumber,
RANK() OVER (ORDER BY CustomerID) AS Rank,
DENSE_RANK() OVER (ORDER BY CustomerID) AS DenseRank,
NTILE(10000) OVER (ORDER BY CustomerID) AS NTile
FROM Sales.SalesOrderHeader
结果集:
OrderID CustomerID RowNumber Rank DenseRank NTile
-------- ------------- --------- ------- --------- --------
43860 1 1 1 1 1
44501 1 2 1 1 1
45283 1 3 1 1 1
46042 1 4 1 1 1
46976 2 5 5 2 2
47997 2 6 5 2 2
49054 2 7 5 2 2
50216 2 8 5 2 2
51728 2 9 5 2 3
57044 2 10 5 2 3
63198 2 11 5 2 3
69488 2 12 5 2 3
44124 3 13 13 3 4
44791 3 14 13 3 4
:
  10.PARTITION BY基本使用方法:
  SELECT
SalesOrderID,
SalesPersonID,
OrderDate,
ROW_NUMBER() OVER (PARTITION BY SalesPersonID ORDER BY OrderDate) AS OrderRank
FROM Sales.SalesOrderHeader
WHERE SalesPersonID IS NOT NULL
结果集:
SalesOrderID SalesPersonID OrderDate OrderRank
--------------- ---------------- ------------ --------------
:
43659 279 2001-07-01 00:00:00.000 1
43660 279 2001-07-01 00:00:00.000 2
43681 279 2001-07-01 00:00:00.000 3
43684 279 2001-07-01 00:00:00.000 4
43685 279 2001-07-01 00:00:00.000 5
43694 279 2001-07-01 00:00:00.000 6
43695 279 2001-07-01 00:00:00.000 7
43696 279 2001-07-01 00:00:00.000 8
43845 279 2001-08-01 00:00:00.000 9
43861 279 2001-08-01 00:00:00.000 10
:
48079 287 2002-11-01 00:00:00.000 1
48064 287 2002-11-01 00:00:00.000 2
48057 287 2002-11-01 00:00:00.000 3
47998 287 2002-11-01 00:00:00.000 4
48001 287 2002-11-01 00:00:00.000 5
48014 287 2002-11-01 00:00:00.000 6
47982 287 2002-11-01 00:00:00.000 7
47992 287 2002-11-01 00:00:00.000 8
48390 287 2002-12-01 00:00:00.000 9
48308 287 2002-12-01 00:00:00.000 10
:
  
11.PARTITION BY聚合使用方法:
WITH CTETerritory AS
(
SELECT
cr.Name AS CountryName,
CustomerID,
SUM(TotalDue) AS TotalAmt
FROM
Sales.SalesOrderHeader AS soh
INNER JOIN Sales.SalesTerritory AS ter ON soh.TerritoryID = ter.TerritoryID
INNER JOIN Person.CountryRegion AS cr ON cr.CountryRegionCode = ter.
CountryRegionCode
GROUP BY
cr.Name, CustomerID
)
SELECT
*,
RANK() OVER(PARTITION BY CountryName ORDER BY TotalAmt, CustomerID DESC) AS Rank
FROM CTETerritory
  
结果集:
  CountryName CustomerID TotalAmt Rank
-------------- ------------- ----------- --------------
Australia 29083 4.409 1
Australia 29061 4.409 2
Australia 29290 5.514 3
Australia 29287 5.514 4
Australia 28924 5.514 5
:
Canada 29267 5.514 1
Canada 29230 5.514 2
Canada 28248 5.514 3
Canada 27628 5.514 4
Canada 27414 5.514 5
:
France 24538 4.409 1
France 24535 4.409 2
France 23623 4.409 3
France 23611 4.409 4
France 20961 4.409 5
:
  12.PARTITION BY求平均数使用方法:
  WITH CTETerritory AS
(
SELECT
cr.Name AS CountryName,
CustomerID,
SUM(TotalDue) AS TotalAmt
FROM
Sales.SalesOrderHeader AS soh
INNER JOIN Sales.SalesTerritory AS ter ON soh.TerritoryID = ter.TerritoryID
INNER JOIN Person.CountryRegion AS cr ON cr.CountryRegionCode = ter.
CountryRegionCode
GROUP BY
cr.Name, CustomerID
)
SELECT
*,
RANK() OVER (PARTITION BY CountryName ORDER BY TotalAmt, CustomerID DESC) AS Rank,
AVG(TotalAmt) OVER(PARTITION BY CountryName) AS Average
FROM CTETerritory
  
结果集:
  CountryName CustomerID TotalAmt Rank Average
-------------- ------------- ----------- ------- ------------------
Australia 29083 4.409 1 3364.8318
Australia 29061 4.409 2 3364.8318
Australia 29290 5.514 3 3364.8318
:
Canada 29267 5.514 1 12824.756
Canada 29230 5.514 2 12824.756
Canada 28248 5.514 3 12824.756
:
  转载请注明此文原创自CSDN TJVictor的专栏:http://blog.csdn.net/tjvictor/archive/2009/07/08/4331039.aspx

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-295917-1-1.html 上篇帖子: 利用SQL Server 2005减轻生产服务器优化负荷 下篇帖子: 从算法入手讲解SQL Server的典型示例
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表