设为首页 收藏本站
查看: 641|回复: 0

[经验分享] SQL Server 聚集索引和非聚集索引的区别分析

[复制链接]

尚未签到

发表于 2016-11-9 00:11:19 | 显示全部楼层 |阅读模式
聚集索引:物理存储按照索引排序 非聚集索引:物理存储不按照索引排序
聚集索引:物理存储按照索引排序
非聚集索引:物理存储不按照索引排序
优势与缺点
聚集索引:插入数据时速度要慢(时间花费在“物理存储的排序”上,也就是首先要找到位置然后插入)
查询数据比非聚集数据的速度快
汉语字典的正文本身就是一个聚集索引。比如,我们要查“安”字,就会很自然地翻开字典的前几页,因为“安”的拼音是“an”,而按照拼音排序汉字的字典是以英文字母“a”开头并以“z”结尾的,那么“安”字就自然地排在字典的前部。如果您翻完了所有以“a”开头的部分仍然找不到这个字,那么就说明您的字典中没有这个字;同样的,如果查“张” 字,那您也会将您的字典翻到最后部分,因为“张”的拼音是“zhang”。也就是说,字典的正文部分本身就是一个目录,您不需要再去查其他目录来找到您需要找的内容。正文内容本身就是一种按照一定规则排列的目录称为“聚集索引”。
    如果您认识某个字,您可以快速地从自动中查到这个字。但您也可能会遇到您不认识的字,不知道它的发音,这时候,您就不能按照刚才的方法找到您要查的字,而需要去根据“偏旁部首”查到您要找的字,然后根据这个字后的页码直接翻到某页来找到您要找的字。但您结合“部首目录”和“检字表”而查到的字的排序并不是真正的正文的排序方法,比如您查“张”字,我们可以看到在查部首之后的检字表中“张”的页码是672页,检字表中“张”的上面是“驰”字,但页码却是63 页,“张”的下面是“弩”字,页面是390页。很显然,这些字并不是真正的分别位于“张”字的上下方,现在您看到的连续的“驰、张、弩”三字实际上就是他们在非聚集索引中的排序,是字典正文中的字在非聚集索引中的映射。我们可以通过这种方式来找到您所需要的字,但它需要两个过程,先找到目录中的结果,然后再翻到您所需要的页码。我们把这种目录纯粹是目录,正文纯粹是正文的排序方式称为“非聚集索引”。
    通过以上例子,我们可以理解到什么是“聚集索引”和“非聚集索引”。
进一步引申一下,我们可以很容易的理解:每个表只能有一个聚集索引,因为目录只能按照一种方法进行排序。得出查询速度的方法是:在各个select语句前加:declare @d datetime

set @d=getdate()

并在select语句后加:

select [语句执行花费时间(毫秒)]=datediff(ms,@d,getdate())

1、用聚合索引比用不是聚合索引的主键速度快

2、用聚合索引比用一般的主键作order by时速度快,特别是在小数据量情况下
      事实上,如果数据量很小的话,用聚集索引作为排序列要比使用非聚集索引速度快得明显的多;而数据量如果很大的话,如10万以上,则二者的速度差别不明显。

3、使用聚合索引内的时间段,搜索时间会按数据占整个数据表的百分比成比例减少,而无论聚合索引使用了多少个

4 、日期列不会因为有分秒的输入而减慢查询速度

从publish 表中取出第 n 条到第 m 条的记录:
SELECT TOP m-n+1 *
FROM publish
WHERE (id NOT IN
    (SELECT TOP n-1 id
     FROM publish))

id 为publish 表的关键字

只所以把“查询优化”和“分页算法”这两个联系不是很大的论题放在一起,就是因为二者都需要一个非常重要的东西――聚集索引。

在前面的讨论中我们已经提到了,聚集索引有两个最大的优势:

1、以最快的速度缩小查询范围。

2、以最快的速度进行字段排序。

第1条多用在查询优化时,而第2条多用在进行分页时的数据排序。
      而聚集索引在每个表内又只能建立一个,这使得聚集索引显得更加的重要。聚集索引的挑选可以说是实现“查询优化”和“高效分页”的最关键因素。
      但要既使聚集索引列既符合查询列的需要,又符合排序列的需要,这通常是一个矛盾。

聚集索引是如此的重要和珍贵,所以一定要将聚集索引建立在:

1、您最频繁使用的、用以缩小查询范围的字段上;

2、您最频繁使用的、需要排序的字段上。
二)何时使用聚集索引或非聚集索引
下面的表总结了何时使用聚集索引或非聚集索引(很重要)。
动作描述              使用聚集索引           使用非聚集索引
列经常被分组排序      应                     应
返回某范围内的数据    应                     不应
一个或极少不同值      不应                   不应
小数目的不同值        应                     不应
大数目的不同值        不应                   应
频繁更新的列          不应                   应
外键列                应                     应
主键列                应                     应
频繁修改索引列        不应                   应

每个表中只能有一个聚集索引的规则。




文章转自  http://www.iyunv.net/article/27658.htm

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-297488-1-1.html 上篇帖子: 转:sql server 获取每一个类别中值最大的一条数据 下篇帖子: 查询sql server表名、字段名和注释及jdbc连接问题
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表