设为首页 收藏本站
查看: 564|回复: 0

[经验分享] hadoop 源码分析(六)hadoop taskTracker 生成map 和reduce任务流程

[复制链接]

尚未签到

发表于 2016-12-11 11:17:53 | 显示全部楼层 |阅读模式
taskTracker 生成map reduce 任务详解
1.启动 TaskTracker ,执行main方法 new TaskTracker(conf) 启动taskTracker
2.taskTrack 构造方法初始化变量
mapred.tasktracker.map.tasks.maximum taskTracker 可launch 的最大map数 默认是2
mapred.tasktracker.map.tasks.maximum taskTracker 可launch 的最大reduce数 默认是2
mapred.disk.healthChecker.interval   磁盘健康度检查时间间隔 mills 默认是60*1000
构造rpc 链接jobTACKER
tasktracker.http.threads taskTracker 工作线程数,默认是40 ,copy数据的线程数
initialize(); 构造方法,该方法是一个独立于taskTracker的方法,可循环调用,在taskTracker 处于关闭状态时 仍可用
该方法主要用户构造一些 运行时目录 和心跳RPC 信息初始化分布式缓存开发map任务监听线程 初始化new TaskLauncher() 启动map 和reduce 任务抓取线程
synchronized void initialize() throws IOException, InterruptedException {
this.fConf = new JobConf(originalConf);


// 绑定地址.taskTracker 的地址 绑定到rpc中 为传送心跳信息做准备
String address =
NetUtils.getServerAddress(fConf,
"mapred.task.tracker.report.bindAddress",
"mapred.task.tracker.report.port",
"mapred.task.tracker.report.address");
InetSocketAddress socAddr = NetUtils.createSocketAddr(address);
String bindAddress = socAddr.getHostName();
int tmpPort = socAddr.getPort();
//初始化jvm 管理类
this.jvmManager = new JvmManager(this);

// RPC 初始化
int max = maxMapSlots > maxReduceSlots ?
maxMapSlots : maxReduceSlots;
//set the num handlers to max*2 since canCommit may wait for the duration
//of a heartbeat RPC
//此处taskTracker 汇报的 处理任务的slot 在实际的基础上*2,因为在心跳汇报的阶段传输这段时间会空出来一部分slot.在新的heartbeat 过来的时候 有2倍的slot处理能力
this.taskReportServer = RPC.getServer(this, bindAddress,
tmpPort, 2 * max, false, this.fConf, this.jobTokenSecretManager);
this.taskReportServer.start();

// 初始化分布式缓存,在写mr代码的时候 讲一个文件写入DistributedCache 的时候, DistributedCache 在这个位置进行初始化
this.distributedCacheManager = new TrackerDistributedCacheManager(
this.fConf, taskController);

// start the thread that will fetch map task completion events
//在该位置启动 map和reduce任务的处理线程
this.mapEventsFetcher = new MapEventsFetcherThread();
mapEventsFetcher.setDaemon(true);
mapEventsFetcher.setName(
"Map-events fetcher for all reduce tasks " + "on " +
taskTrackerName);
mapEventsFetcher.start();
//这里 初始化了两个类TaskLauncher reduce 和map 这两个类是具体的 生成map和reduce 的任务类.
mapLauncher = new TaskLauncher(TaskType.MAP, maxMapSlots);
reduceLauncher = new TaskLauncher(TaskType.REDUCE, maxReduceSlots);
mapLauncher.start();
reduceLauncher.start();

下面详细的讲一下TaskLauncher类,该类为taskTracker 类的内部类,在启动taskTracker 的时候 通过独立的initialize()方法启动.
该类是一个线程类.通过addToTaskQueue() 方法将新的任务添加到 tasksToLaunch list (List<TaskInProgress> tasksToLaunch)中,这个list 很重要,jobTracker将需要job 通过assginTaks 将需要执行的task 通过心跳信息 传给taskTracker,taskTracker 的run()方法调用offerService()解析心跳信息,将解析得来的task执行信息 添加到这个list中, 然后启动run方法 时刻去查看 tasksToLaunch list中是不是有新的 任务放进来.r如果有则去执行,如果没有则调用tasksToLaunch.wait(); 等待.调用startNewTask 方法调用launchTaskForJob() 通过调用 launchTask 去执行map 和reduce任务, launchTask 要判断任务的状态. UNASSIGNED FAILED_UNCLEAN KILLED_UNCLEAN RUNNING
TaskTracker 主要是通过监听jobTracker 通过心跳信息传过来的task任务放在 task的队中 去执行task.
在这个过程中 还会有一些 例如 numFreeSlots 的判断 ,tip 完全是 同步的,等等
jobTracker 通过调用JobQueueTaskScheduler的assginTasks()方法 分配task,两种方式 生成tak
obtainNewNodeOrRackLocalMapTask 和obtainNewNonLocalMapTask
obtainNewNodeOrRackLocalMapTask 即为hadoop 机架感知功能,调度的时候根据location 因素去分配taskTracker
obtainNewNodeOrRackLocalMapTask 非机架感知
DSC0000.jpg

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-312752-1-1.html 上篇帖子: ClassNotFoundException: Class org.apache.hadoop.hive.contrib.serde2.RegexSerDe n 下篇帖子: 基于hadoop 0.19.0 + jdk 1.6 + eclipse 3.3.2 开发环境配置
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表