设为首页 收藏本站
查看: 897|回复: 0

[经验分享] Hadoop深入学习:MapReduce作业提交和初始化

[复制链接]

尚未签到

发表于 2016-12-12 07:53:37 | 显示全部楼层 |阅读模式
之前已经学过了MapReduce接口编程模型及涉及的相关组件,本节我们主要学习MapReduce的作业提交过程和如何初始化作业这两部分的内容。
        下面我们来熟悉一下MapReduce作业的提交和初始化的过程:
DSC0000.jpg
        作业的提交过程
        第一步,使用Hadoop提供的shell命令提交作业,命令行作业提交命令:
$HADOOP_HOME/bin/hadoop jar job.jar \
-D mapred.job.name="task-test" \
-D mapred.reduce.tasks=3 \
-files=blacklist.txt,whitelist.xml \
-libjars=xxx.jar \
-archives=yyy.zip \
-input /test/input \
-output /test/output

        当用户按上述命令格式提交作业后,命令行脚本会调用JobClient.runJob()方法(1.0新版本的MapReduce API使用job.waitForCompletion(true)方法)提交作业,之后的函数调用过程如下图所示:
DSC0001.jpg
        第二步,作业文件上传
        JobClient将作业提交到JobTracker节点上之前,需要作业写初始化工作。初始化工作由JobClient.submitJobInternal(job)实现,这些初始化包括获取作业的jobId、创建HDFS目录、上传作业以及生成所有的InputSplit分片的相关信息等。
        MapReduce的作业文件的上传和下载都是由DistributedCache透明完成的,它是Hadoop专门开发的数据分发工具。
        第三步,生成InputSplit文件
        作业提交后,JobClient会调用InputFormat的getSplits()方法生成相关的split分片信息,该信息包括InputSplit元数据信息和原始的InputSplit信息,其中元数据信息被JobTracker使用,第二部分在Map Task初始化时由Mapper使用来获取自己要处理的数据,这两部分数据被保存到job.split文件和job.splitmetainfo文件中。
        第四步,将作业提交到JobTracker
        JobClient通过RPC将作业提交到JobTracker端,在这一阶段会依次进行如下操作:
        1)、为作业创建JobInProgress对象。JobTracker会为用户提交的每一个作业创建一个JobInProgress对象,这个对象维护了作业的运行时信息,主要用于跟踪正在运行的作业的状态和进度;
        2)、检查用户是否具有指定队列的作业提交权限。Hadoop以队列为单位来管理作业和资源,每个队列分配有一定亮的资源,管理严可以为每个队列指定哪些用户有权限提交作业;
        3)、检查作业配置的内存使用量是否合理。用户在提交作业时,可已分别通过参数mapred.job.map.memory.mb和mapred.job.reduce.memory.mb指定Map Task和Reduce Task的内存使用量,而管理员可以给集群中的Map Task和Reduce Task分别设置中的内存使用量,一旦用户配置的内存使用量超过总的内存限制,作业就会提交失败;
        4)、通知TaskScheduler初始化作业
        JobTracker收到提交的作业后,会交给TaskScheduler调度器,然后按照一定的策略对作业做初始化操作。
        作业的初始化
        作业的初始化主要是指构造Map Task和Reduce Task并对它们进行初始化操作。
        这一步的操作主要是由调度器调用JobTracker.initJob()方法来对新作业做初始化的。Hadoop将每个作业分节成4中类型的任务:Setup Task,Map Task,Reduce Task和Cleanup Task,它们的运行时信息由TaskInProgress维护,因此,从某个方面将,创建这些任务就是创建TaskInProgress对象。
        Setup Task
        作业初始化标志性任务,它进行一些很简单的作业初始化工作。该类型任务又分为Map Setup Task和Reduce Setup Task两种,并且只能运行一次。
        Map Task
        Map阶段的数据处理任务。
        Reduce Task
        Reduce阶段的处理数据的任务。其数目可以由用户通过参数mapred.reduce.tasks指定。Hadoop刚开始的时候只会调度Map Task任务,直到Map Task完成数目达到由参数mapred.reduce.slowstart.completed.maps指定的百分比后,才开始调度Reduce Task。
        Cleanup Task
        作业结束的标志性任务,主要是做一些作业清理的工作,比如删除作业在运行中产生的一些零食目录和数据等信息。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-312895-1-1.html 上篇帖子: Hadoop The Definitive Guide 2nd Edition 读书笔记3 下篇帖子: JMX对Hadoop和HBase的集群监控
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表