设为首页 收藏本站
查看: 889|回复: 0

[经验分享] hadoop中每个节点map和reduce个数的设置调优

[复制链接]

尚未签到

发表于 2016-12-13 09:00:08 | 显示全部楼层 |阅读模式
  mapred.tasktracker.map.tasks.maximum这个是一个task tracker中可同时执行的map的最大个数,默认值为2,看《pro hadoop》:it is common to  set this value to the effective number of CPUs on the node
  把Job分割成map和reduce
  合理地选择Job中 Tasks数的大小能显著的改善Hadoop执行的性能。增加task的个数会增加系统框架的开销,但同时也会增强负载均衡并降低任务失败的开销。一个极端是1个map、1个reduce的情况,这样没有任务并行。另一个极端是1,000,000个map、1,000,000个reduce的情况,会由于框架的开销过大而使得系统资源耗尽。
Map任务的数量
  Map的数量经常是由输入数 据中的DFS块的数量来决定的。这还经常会导致用户通过调整DFS块大小来调整map的数量。正确的map任务的并行度似乎应该是10-100  maps/节点,尽管我们对于处理cpu运算量小的任务曾经把这个数字调正到300maps每节点。Task的初始化会花费一些时间,因此最好控制每个 map任务的执行超过一分钟。
  实际上控制map任务的个数是很 精妙的。mapred.map.tasks参数对于InputFormat设 定map执行的个数来说仅仅是一个提示。InputFormat的 行为应该把输入数据总的字节值分割成合适数量的片段。但是默认的情况是DFS的块大小会成为对输入数据分割片段大小的上界。一个分割大小的下界可以通过一个mapred.min.split.size参数来设置。因此,如果你有一个大小是10TB的输入数据,并设置DFS块大小为  128M,你必须设置至少82K个map任务,除非你设置的mapred.map.tasks参数比这个数还要大。最终InputFormat决定了map任务的个数。
  Map任务的个数也能通过使用JobConf的  conf.setNumMapTasks(int  num)方法来手动地设置。这个方法能够用来增加map任务的个数,但是不能设定任务的个数小于Hadoop系统通过分割输入数据得到的值。
Reduce任务的个数
  正确的reduce任务的 个数应该是0.95或者1.75 ×(节点数  ×mapred.tasktracker.tasks.maximum参数值)。如果任务数是节点个数的0.95倍,那么所有的reduce任务能够在 map任务的输出传输结束后同时开始运行。如果任务数是节点个数的1.75倍,那么高速的节点会在完成他们第一批reduce任务计算之后开始计算第二批reduce任务,这样的情况更有利于负载均衡。
  目前reduce任务的数量 由于输出文件缓冲区大小(io.buffer.size × 2 ×reduce任务个数 <<  堆大小),被限制在大约1000个左右。直到能够指定一个固定的上限后,这个问题最终会被解决。
  Reduce任务的数量同时也控制着输出目录下输出文件的数量,但是通常情况下这并不重要,因为下一阶段的 map/reduce任务会把他们分割成更加小的片段。
  Reduce任务也能够与 map任务一样,通过设定JobConf的conf.setNumReduceTasks(int num)方法来增加任务个数。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-313545-1-1.html 上篇帖子: 分布式计算开源框架Hadoop介绍 作者:岑文初 来源:InfoQ   下篇帖子: nutch 1.2 hadoop 错误解决Stopping at depth=0
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表