设为首页 收藏本站
查看: 779|回复: 0

[经验分享] Solr: Introduction

[复制链接]

尚未签到

发表于 2016-12-14 08:25:03 | 显示全部楼层 |阅读模式
  Solr  is  Searching On Lucene w/Replication
  Specifically, Solr is a scalable, ready-to-deploy enterprise search engine that’s optimized to search large volumes of text-centric data and return results sorted by relevance.

  • Scalable—Solr scales by distributing work (indexing and query processing) to multiple servers in a cluster.
  • Ready to deploy—Solr is open source, is easy to install and configure, and provides a preconfigured example to help you get started.
  • Optimized for search—Solr is fast and can execute complex queries in subsecond speed, often only tens of milliseconds.
  • Large volumes of documents—Solr is designed to deal with indexes containing many millions of documents.
  • Text-centric—Solr is optimized for searching natural-language text, like emails, web pages, resumes, PDF documents, and social messages such as tweets or blogs.
  • Results sorted by relevance—Solr returns documents in ranked order based on how relevant each document is to the user’s query.
  Search engines like Solr are optimized to handle data exhibiting four main characteristics:

  • Text-centric
  • Read-dominant
  • Document-oriented
  • Flexible schema
  You also want to consider which fields in your documents must be stored in Solr and which should be stored in another system, such as a database. A search engine isn’t the place to store data unless it’s useful for search or displaying results.
Building a web-scale inverted index


It might surprise you that search engines like Google also use an inverted index for searching the web. In fact, the need to build a web-scale inverted index led to the invention of MapReduce.


MapReduce is a programming model that distributes large-scale data-processing operations across a cluster of commodity servers by formulating an algorithm into two phases: map and reduce. With its roots in functional programming, MapReduce was adapted by Google for building its massive inverted index to power web search.


Using MapReduce, the map phase produces a unique term and document ID where the term occurs. In the reduce phase, terms are sorted so that all term/docID pairs are sent to the same reducer process for each unique term. The reducer sums up all term frequencies for each term to generate the inverted index.

  ------------------------------------------------------------------------------------------------------------------------------------
Diagram of the main components of Solr 4

  
DSC0000.png
 

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-313934-1-1.html 上篇帖子: Welcome to Solr 下篇帖子: nutch+solr,solr文件配置
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表