设为首页 收藏本站
查看: 807|回复: 0

[经验分享] Solr:Key Solr concepts

[复制链接]

尚未签到

发表于 2016-12-14 09:02:18 | 显示全部楼层 |阅读模式
  Document
  A document, then, is a collection of fields that map to particular field types defined in a schema. Each field in a document has its content analyzed according to its field type, and the results of that analysis are saved into a search index in order to later retrieve the document by sending in a related query.
  The inverted index
DSC0000.png
 
  Graphical representation of using common Boolean query operators
  
DSC0001.png
 
  Phrase queries and term positions

DSC0002.png
inverted index with term positions

  Fuzzy matching
  Fuzzy matching is defined as the ability to perform inexact matches on terms in the search index. 

  • wildcard searching someone may want to search for any words that start with a particular prefix
  • fuzzy searching or edit distance searching  may want to find spelling variations within one or two characters
  • proximity searching may want to match two terms within some maximum distance of each other.
  • range searching    search for terms that fall between known values.
  -----------------------------------------------------------------------------------------------------------------------------------
  Default similarity scoring algorithm
  
DSC0003.png
  Normalization factors

  • FIELD NORMS   Field norms are calculated at index time and are represented as an additional byte per field in the Solr index. norm(t,d) = d.getBoost() · lengthNorm(f) · f.getBoost()
  • QUERY NORMS  t uses the sum of the squared weights for each of the query terms to generate this factor, which is multiplied with the rest of the relevancy score to normalize it. The query norm should not affect the relative weighting of each document that matches a given query.
  • COORD FACTOR  The idea behind the coord factor is that, all things being equal, documents that
    contain more of the terms in the query should score higher than documents that only match a few.
  ----------------------------------------------------------------------------------------------------------------------------------
  Precision and Recall

  • Precision      The Precision of a search results set (the documents that match a query) is a measurement attempting to answer the question, “Were the documents that came back the ones I was looking for?”    #Correct Matches / #Total Results Returned   
  • Recall           Recall is answering the question:“How many of the correct documents were returned?”#Correct Matches / (#Correct Matches + #Missed Matches)
  The critical difference between Precision and Recall: Precision is high when the results returned are correct; Recall is high when the correct results are present. Recall does not care that all of the results are correct. Precision does not care that all of the results are present.
  The decision on how to best balance Precision and Recall is ultimately dependent upon your use case.
  -------------------------------------------------------------------------------------------------------------------------------------
Searching at scale

  The denormalized document
  Central to Solr is the concept of all documents being denormalized. A denormalized document is one in which all fields are self-contained within the document, even if the values in those fields are duplicated across many documents.
  
DSC0004.png
 
DSC0005.png
 

  While this denormalized document data model may sound limiting, it also provides a sizable advantage: extreme scalability. Because we can make the assumption that each document is self-contained, this means that we can also partition documents across multiple servers without having to keep related documents on the same server (because documents are independent of one another). This fundamental assumption of document independence allows queries to be parallelized across multiple partitions
of documents and multiple servers to improve query performance, and this ultimately allows Solr to scale horizontally to handle querying billions of documents. This ability to scale across multiple partitions and servers is calleddistributed searching.
  http://box1:8983/solr/core1/select?q=*:*&shards=box1:8983/solr/core1,box2:8983/solr/core2,box2:8983/solr/core3
  (Query Speed on N+1 indexes) = Aggregation Overhead + (Query Speed on N indexes)/(N+1)

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-314023-1-1.html 上篇帖子: solr总结 第三部分:solr运行 下篇帖子: solr分组
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表