设为首页 收藏本站
查看: 771|回复: 0

[经验分享] Solr: Sharding and replication

[复制链接]

尚未签到

发表于 2016-12-15 08:36:25 | 显示全部楼层 |阅读模式
  Solr allows you to create multiple search indexes, each of which is represented by a Solr core. It is possible to partition your content across multiple Solr indexes (called sharding), as well as to create multiple copies of any partition of the data (called replication).
  Choosing to shard
  Sharding can be useful if you have too many documents to comfortably handle on a single server.
  
DSC0000.png
 
  The number of shards has nothing to do with fault tolerance. It is strictly to help scale as the size of your collection of documents grows.In general, there are five primary factors you need to consider when decid-
ing on how many shards you need:


  • Total number of documents
  • Document size
  • Required indexing throughput
  • Query complexity
  • Expected growth
  Choosing to replicate
  If your Solr cluster can handle 100 queries per second but your application needs to support 150 queries per second, you have a problem. Rather than breaking your index into additional partitions (adding shards), you would want to create multiple identical copies of your index and load balance traffic across each of the copies.
  
DSC0001.png
 Master server’s solrconfig.xml

(http://masterserver:8983/solr/core1)
<requestHandler name="/replication" class="solr.ReplicationHandler">
<lst name="master">
<str name="enable">true</str>
<str name="replicateAfter">commit</str>
<str name="replicateAfter">optimize</str>
<str name="replicateAfter">startup</str>
</lst>
</requestHandler>
  Slave server’s solrconfig.xml

(http://slaveserver:8983/solr/core1)
<requestHandler name="/replication" class="solr.ReplicationHandler">
<lst name="slave">
<str name="enable">true</str>
<str name="masterUrl">
http://masterserver:8983/solr/core1/replication
</str>
<str name="pollInterval">00:00:15</str>
</lst>
</requestHandler>
  COMBINING SHARDING AND REPLICATION
  At this point you know how to scale Solr to handle either more content (by sharding) or more query load (by replicating). If you are lucky enough to have both a large dataset and a large number of users trying to query your data, however, you may need to set up a cluster utilizing both sharding and replication. If you often have a large amount of indexing going, you may also want to separate your indexing operation and your query operation onto separate servers.
  
DSC0002.png
 
  As you can tell from figure 12.5, setting up a Solr cluster to handle both sharding and replication can quickly become a maintenance nightmare. Querying load balancing between multiple manually defined Solr cores and ensuring replication is configured and enabled between each Solr core on the slave servers and the associated Solr core on the master server can become complex quickly. If you ever have a failure in one of your nodes, it can cause multiple nodes in the cluster to fail. If the single master server in figure 12.5 fails, for example, the entire cluster will stop receiving updates. Likewise, if one slave fails, any other slaves trying to run a distributed search dependent upon the failed slave will also fail their queries.
  
Thankfully, SolrCloud was created to take over management of these kinds of complexities for you.

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-314435-1-1.html 上篇帖子: Solr开发文档(转载) 下篇帖子: (转)Solr开发文档
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表