设为首页 收藏本站
查看: 868|回复: 0

[经验分享] Solr性能优化之filterCache

[复制链接]

尚未签到

发表于 2016-12-16 06:07:42 | 显示全部楼层 |阅读模式
  原文:Solr性能优化之filterCache

什么是filtercache?

    solr应用中为了提高查询速度有可以利用几种cache来优化查询速度,分别是fieldValueCache,queryResultCache,documentCache,filtercache,在日常使用中最为立竿见影,最有效的应属filtercache,何谓filtercache?这个需要从一段solr的查询日志开始说起,下面是我截取的solr运行中打印的一段查询日志:

[search4alive-0] Request_is ==> q=status%3A0++AND+biz_type%3A2+AND+class_id%3A1&sort=index_sort_order+desc&start=0&rows=5,queryTime_is ==> 2                                      
[search4alive-0] Request_is ==> q=status%3A0++AND+biz_type%3A1+AND+class_id%3A1+AND+%28group_id%3A411%29&sort=gmt_create+desc&start=0&rows=20,queryTime_is ==> 2                  
[search4alive-0] Request_is ==> q=status%3A0++AND+biz_type%3A2+AND+class_id%3A1&sort=index_sort_order+desc&start=0&rows=5,queryTime_is ==> 2                                      
[search4alive-0] Request_is ==> q=status%3A0++AND+biz_type%3A1+AND+class_id%3A1+AND+%28group_id%3A8059%29&sort=gmt_create+desc&start=0&rows=20,queryTime_is ==> 0                 
[search4alive-0] Request_is ==> debugQuery=on&group=true&group.field=group_id&group.ngroups=true&group.sort=gmt_create+desc&q=status%3A0++AND+biz_type%3A1+AND+class_id%3A1+AND+ha
[search4alive-0] Request_is ==> q=status%3A0++AND+biz_type%3A2+AND+class_id%3A1&sort=index_sort_order+desc&start=30&rows=30,queryTime_is ==> 4                                    
[search4alive-0] Request_is ==> q=status%3A0++AND+biz_type%3A2+AND+class_id%3A1&sort=index_sort_order+desc&start=0&rows=5,queryTime_is ==> 1                                      
[search4alive-0] Request_is ==> q=status%3A0++AND+biz_type%3A1+AND+class_id%3A1+AND+%28group_id%3A375%29&sort=gmt_create+desc&start=0&rows=20,queryTime_is ==> 3                  
[search4alive-0] Request_is ==> q=status%3A0++AND+biz_type%3A2+AND+class_id%3A1&sort=index_sort_order+desc&start=0&rows=5,queryTime_is ==> 1                                      
[search4alive-0] Request_is ==> q=status%3A0++AND+biz_type%3A2+AND+class_id%3A1&sort=index_sort_order+desc&start=0&rows=30,queryTime_is ==> 4                                    
[search4alive-0] Request_is ==> q=status%3A0++AND+biz_type%3A2+AND+class_id%3A1&sort=index_sort_order+desc&start=0&rows=5,queryTime_is ==> 1                                      
[search4alive-0] Request_is ==> q=status%3A0++AND+biz_type%3A2+AND+class_id%3A1&sort=index_sort_order+desc&start=0&rows=30,queryTime_is ==> 4                                    
[search4alive-0] Request_is ==> q=status%3A0++AND+biz_type%3A2+AND+class_id%3A1&sort=index_sort_order+desc&start=0&rows=30,queryTime_is ==> 3                                    

   看到这段查询日志之后,我们开始考虑如何提升查询的rt(查询速度),因为在参数q中的查询是要有磁盘IO开销的,很自然的思路是将整个查询的参数q作为key,对应的结果作为value,这样做是可以的,但是查询的命中率会很低,会占用大量内存空间。
   查询参数q上基本上每次都会出现status,biz_type,class_id 对于这样的字查询,所以可以把整个查询条件分成两部分一部分是以status,biz_type,class_id 这几个条件组成的子查询条件,另外一部分是除这三个条件之外的子查询。在进程查询的时候,先将status,biz_type,class_id 条件组成的条件作为key,对应的结果作为value进行缓存,然后再和另外一部分查询的结果进行求交运算。
 

DSC0000.png

  
       通过上面这幅图明白了filtercache的意义是,将原先一个普通查询分割成两个组合查询的与运算,两个子查询至少有一个使用缓存,这样既减少了查询过程的IO操作,又控制了缓存的容量不会消耗过多的内存。

如何使用?

首先要配置solrconfig.xml 要开启fltercache:
 

Xml代码   DSC0001.png





  • <query>  
  •         <filterCache    class="solr.LRUCache"     size="50000"      initialSize="512"      autowarmCount="0"/>  
  • </query>  



 这里使用的是solr实现的基于LRU算法的缓实现,以上配置是使用solr.LRUCache ,使用这个cache在插入多,查询少的情况比较使用,如果是查询多,插入少的情况,可以使用solr.FastLRUCache缓存模块。
 
 
客户端API调用:
下面是原先的客户端端查询代码:
 

Java代码  





  • SolrQuery query = new SolrQuery();  
  •   
  • query.setQuery("status:0 AND biz_type:1 AND class_id:1 AND xxx:123");  
  •   
  • QueryResponse response = qyeryServer.query(query);  



 
 
使用filterQuery之后的查询代码:
 

Java代码  





  • SolrQuery query = new SolrQuery();  
  •   
  • query.addFilterQuery("status:0 AND biz_type:1 AND class_id:1");  
  • query.setQuery("xxx:123");  
  •   
  • QueryResponse response = qyeryServer.query(query);  



 
经过测试这样优化之后,查询的RT会明显减小,QPS会有明显提升。
 
使用filterquery过程中需要注意点:
 
●不能在filterQuery 上重复出现query中的查询参数,如果上面的filterquery调用方法如下所示:
 

Java代码  





  • query.addFilterQuery("status:0 AND biz_type:1 AND class_id:1 AND xxx:123");  
  • query.setQuery("xxx:123");  



 如上,条件xxx:123 在filterQuery和query上都出现了,这样的写法非但起不到查询优化的目的,而且还会增加查询的性能开销。
 
●尽量减少调用addFilterQuery方法的次数

Java代码  





  • query.addFilterQuery("status:0 ");  
  • query.addFilterQuery("biz_type:1 ");  
  • query.addFilterQuery("class_id:1 ");  
  • query.setQuery("xxx:123");  



如上,将status:0 AND biz_type:1 AND class_id:1 这个组合查询条件,分三次调用filterQuery方法来完成,这样的调用方法虽然是正确的,并且能起到性能优化的效果,优化性能没有调用一次addFilterQuery方法来得高,原因是多调用了两次addFilterQuery,就意味着最后需要多进行两次结果集的求交运算,虽然结果集求交运算速度很快,但毕竟是有性能损耗的。
 
不过从内存开销的角度来说,调用三次addfilterQuery方法这样可以有效降低内存的使用量,这个是肯定的。所以在是否调用多次addFilterQuery方法的原则是,在内存开销允许的前提下,将量将所有filterQuery条件,通过调用有限次数的addFilterQuery方法来完成。
 

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-314761-1-1.html 上篇帖子: solr 查询参数说明备忘 下篇帖子: 分布式Solr 配置
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表