设为首页 收藏本站
查看: 1612|回复: 0

[经验分享] solr/lucene影响分数的因素

[复制链接]

尚未签到

发表于 2016-12-16 10:10:08 | 显示全部楼层 |阅读模式
Lucene文档得分计算原理:
首先要理解下文档与词条的向量空间
我们先来说下文档(document)和其中包含的词条(term)之间的关系,对于每篇文档它是由词条组成的因此可以表示成一个向量D(term1,term2,......,termn)。我们假设有两篇文档同时出现了term1和term2,那么我们用一个二维坐标系来表示文档和词条之间的关系。如下:
DSC0000.jpg
在上图中文档1出现term1共3次term21次,文档2出现term1一次出现term2三次,所以可以用D1(3,1)和D2(1,3)对这两个文档来表示,按照上面的分析一个包含了N个term的索引库可以看成是N维向量空间,每一个文档均为其中的一个向量,每一个词条都是向量空间中的一个轴。这样我们就是知道如果两个文档之间的夹角越小他们之间的相似性越高,现在我们如果要对term2进行检索的话,首先把它表示为Q(0,1),我们计算得出它与文档2的夹角小于文档1的夹角,因此这次检索,文档2的分值要高。
影响Lucene的文档得分因素:
(1)tf(term Frequency)词条频率,它表示检索的词条在某个文档中总出现的次数。在lucene中他的值是真实频率的平方根值。
(2)idf(Inversed Document Frequency)反转文档频率
具体计算式:(float)(Math.log(numDocs/(double)(docFreq+1))+1.0)
其中docFreq当前检索词条的文档总数,numDocs索引中的文档的总数
(3)boost
boost是建索引的时候对每一个Filed设置的一种激励因子,默认值为1.0
(4)lengthNorm
他和boost一样也是在建立索引的时候的长度因子。
一个Filed内的词条越多他的长度因子越小,该词条所在的文档的得分也就越低。
最后一个因素对应到solr是schem.xml中filed的 omitNorms属性,如果我们想要这个长度因素起作用需要设置 omitNorms="false"
我们设置
<field name="desc" type="text" indexed="true" stored="true" omitNorms="true"/>
返回结果如下:
<result name="response" numFound="5" start="0" maxScore="2.1541507">
<doc>
<float name="score">2.1541507</float>
<str name="desc">高级工程师</str>
<str name="id">001</str>
</doc>
<doc>
<float name="score">2.1541507</float>
<str name="desc">工程师</str>
<str name="id">002</str>
</doc>
<doc>
<float name="score">2.1541507</float>
<str name="copname">百度</str>
<str name="desc">初级工程师</str>
<str name="id">003</str>
<str name="jobname">销售经理</str>
</doc>
<doc>
<float name="score">2.1541507</float>
<str name="desc">十分牛逼的工程师</str>
<str name="id">004</str>
</doc>
<doc>
<float name="score">2.1541507</float>
<str name="desc">好工程师</str>
<str name="id">005</str>
</doc>
</result>

我们设置如下:
<field name="desc" type="text" indexed="true" stored="true" omitNorms="false"/>
返回结果如下:
<result name="response" numFound="5" start="0" maxScore="1.3463442">
<doc>
<float name="score">1.3463442</float>
<str name="desc">工程师</str>
<str name="id">002</str>
</doc>
<doc>
<float name="score">1.0770754</float>
<str name="copname">百度人才</str>
<str name="desc">高级工程师</str>
<str name="id">001</str>
<str name="jobname">java工程师</str>
</doc>
<doc>
<float name="score">1.0770754</float>
<str name="desc">初级工程师</str>
<str name="id">003</str>
</doc>
<doc>
<float name="score">1.0770754</float>
<str name="desc">好工程师</str>
<str name="id">005</str>
</doc>
<doc>
<float name="score">0.9424409</float>
<str name="desc">十分牛逼的工程师</str>
<str name="id">004</str>
</doc>
</result>

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-315049-1-1.html 上篇帖子: solr in action翻译-第二章了解Solr2.3 下篇帖子: Solr的自动完成/自动补充实现介绍(第三部分)
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表