设为首页 收藏本站
查看: 633|回复: 0

[经验分享] Apache Drill Could Power Faster Through Data

[复制链接]

尚未签到

发表于 2017-1-5 11:05:13 | 显示全部楼层 |阅读模式
The proposed “Drill” project could help speed up Apache Hadoop.
DSC0000.jpg
Actual drills aren’t very useful when it comes to data analysis. But the Drill under proposal could help speed things up.

Given the burgeoning interest in Hadoop and data analytics in general, it’s unsurprising that IT vendors and developers would turn to ways to speed up the process of sorting and gaining insights from data. Enter “Drill,” a new open-source project proposed via the Apache Software Foundation’s incubator wing.
“There is a strong need in the market for low-latency interactive analysis of large-scale datasets, including nested data (eg, JSON, Avro, Protocol Buffers),” read the proposal submitted for the project. “This need was identified by Google and addressed internally with a system called Dremel.”
Over the past few years, more open-source frameworks emerged to help data analysts and IT departments with scalable batch processing. Of these, Apache Hadoop emerged as the favorite of many organizations needing to crunch massive amounts of data. But in the eyes of Drill’s creators, Hadoop’s design prevents it from achieving “the sub-second latency needed for interactive data analysis and exploration.”
Drill, they added, “is intended to address this need.”
Drill’s architecture centers on four components: support for a variety of languages and programming models, including DrQL (used by Dremel and Google BigQuery), Mongo Query Language, and Plume; a low-latency distributed execution engine capable of efficiently querying petabytes of data on 10,000 servers; a layer for supporting schema-based and schema-less formats such as JSON (in the latter case) and Protocol Buffers/Dremel; and a layer supporting various data sources, with an initial focus on “Hadoop as a data source.”
Drill will eventually support encryption on the wire, which is not considered one of the project’s initial goals.
“Significant work” has apparently been done to identify Drill’s initial requirements and system architecture, with implementation of those four components offered as the next step. Although there’s a growing need for tools capable of large-dataset analysis (look at the buzz around Hadoop), Drill’s creators acknowledge that any project of this scope carries inherent risks: vendors deciding to change their strategies around data analytics could doom the project, although that scenario seems unlikely thanks to the aforementioned interest.
The proposal seeks to downplay other potential dangers, including excessive reliance on salaried developers (“we are confident that the project will continue even if no salaried developers contribute to the project”) and relationships with other Apache products (“we look forward to collaborating with those communities, as well as other Apache communities”). Initial workers on the project include employees of MapR Technologies, Drawn to Scale, and Concurrent, with mentors from MapR Technologies, Lucid Imagination and Nokia.
 
http://slashdot.org/topic/bi/apache-drill-could-power-faster-through-data/

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-324212-1-1.html 上篇帖子: apache的配置参数的意义 下篇帖子: Apache http server 的安装设置
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表