设为首页 收藏本站
查看: 412|回复: 0

[经验分享] New Apache project will Drill big data in near real time

[复制链接]

尚未签到

发表于 2017-1-14 07:31:46 | 显示全部楼层 |阅读模式
  
New Apache project will Drill big data in near real time

Dremel-based project accepted as an Apache Incubator


August 16, 2012, 3:02 PM — Working with big data is a lot like dealing with the Heisenberg Uncertainty Principle: either you're going to have a massive amount of data on hand or you're going to be able to query that data in real time--never both.
But now a new open source project has just been accepted as an Apache Software Foundation Incubation project that will let you do both: have your data and search it fast, too.
Apache Drill is an ad-hoc query system based on Dremel, another big data system that, like Hadoop, wasinvented by Google engineers to not only manage large datasets but also perform interactive analysis in near real-time.
To explain Drill, you can first examine the architecture of Hadoop, which uses the Hadoop distributed file system (HDFS) for storage and the MapReduce framework to perform batch analysis on whatever data is stored within Hadoop. Hadoop data, notably, does not have to be structured--which makes Hadoop ideal for analyzing and working with data from sources like social media, documents, and graphs: anything that can't easily fit within rows and columns.
Because Hadoop uses MapReduce to perform data queries, searches have to be done in batches. So, while you can perform highly detailed analysis of historical data, for instance, one area you would not want to use Hadoop for is transactional data. Transactional data, by its very nature, is highly complex and fluid, as a transaction on an ecommerce site can generate many steps that all have to be implemented quickly.
Nor would it be efficient for Hadoop to be used to process structured data sets that require very minimal latency, such as a Web site served up by a MySQL database in a typical LAMP stack. That's a speed requirement that Hadoop would poorly serve.
Drill, however, can perform data queries at a much faster rate -- sometimes trillions of rows in seconds. It can do this by searching data either stored in columnar form (such as Google's BigTable) or within a distributed file system like GoogleFS, the precursor to HDFS.
 
The Drill project was submitted to the ASF by Hadoop vendor MapR, which sees Dremel-based technology as filling a gap in interactive analysis within the big data sector.
 
According to MapR engineer Tomer Shiran, who is leading the Apache Drill project, the first thing the project will work on is getting a consensus on Drill's APIs so that other vendors can work with Drill. While Dremel was strictly being used by Google, there was no need to standardize APIs, but as an open source project that clearly needs to change, Shiran said.
 
"Chris Wensel, who wrote Cascading, is interested in using the Drill execution engine for queries written in Cascading," Shiran added.
 
Expanding supported query languages will be one area of focus for the Drill project. Another will be adding support for additional formats, such as JSON, since right now Dremel only supports the Google Protocol Buffer Format.
Dremel has been in use within the Google offices since 2006, performing such tasks as analysis of crawled web documents, OCR results from Google Books, and debugging of map tiles on Google Maps. Dremel is also the engine that drives Google's BigQuery Analytics as a Service.
After uploading data to the BigQuery service, users gain the advantage of Dremel's use of a custom structured query language (which the Drill team calls DrQL) to run queries, analyzing billions of rows in seconds. This can be done via several methods, including a Web-based user interface, a REST API, or a command-line tool. Data can be imported into the Google BigQuery servers in CSV format.
Dremel, and now Drill, should be attractive for more than just its speed: SQL queries on data are a lot easier to work with than writing MapReduce jobs. But it's not yet a skilled SQL player, as users report a need for better join support as well as support for more analytic functions and set operators.
As Drill moves forward, Shiran said, many of these limitations will be solved, and the tool itself will be extended to become a more robust player in the big data arena.
 
Read more of Brian Proffitt's Open for Discussion blog and follow the latest IT news at ITworld. Drop Brian a line or follow Brian on Twitter at @TheTechScribe. For the latest IT news, analysis and how-tos, follow ITworld on Twitter and Facebook.
 
http://www.itworld.com/big-datahadoop/290026/new-apache-project-will-drill-big-data-near-real-time

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-328060-1-1.html 上篇帖子: 【转】使用Apache防盗链设置和自定义错误页面 下篇帖子: 读《零成本实现web性能测试 基于Apache jmeter 》笔记(一)
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表