设为首页 收藏本站
查看: 877|回复: 0

[经验分享] Python 整数对象实现原理

[复制链接]

尚未签到

发表于 2017-4-25 07:57:46 | 显示全部楼层 |阅读模式
原文:http://foofish.net/blog/89/python_int_implement
整数对象在Python内部用PyIntObject结构体表示:

typedef struct {
PyObject_HEAD
long ob_ival;
} PyIntObject;



PyObject_HEAD宏中定义的两个属性分别是:

int ob_refcnt;        
struct _typeobject *ob_type;



这两个属性是所有Python对象固有的:


  • ob_refcnt:对象的引用计数,与Python的内存管理机制有关,它实现了基于引用计数的垃圾收集机制
  • ob_type:用于描述Python对象的类型信息。

由此看来PyIntObject就是一个对C语言中long类型的数值的扩展,出于性能考虑,对于小整数,Python使用小整数对象池small_ints缓存了[-5,257)之间的整数,该范围内的整数在Python系统中是共享的。

#define NSMALLPOSINTS           257
#define NSMALLNEGINTS           5
static PyIntObject *small_ints[NSMALLNEGINTS + NSMALLPOSINTS];



DSC0000.png
而超过该范围的整数即使值相同,但对象不一定是同一个,如下所示:当a与b的值都是10000,但并不是同一个对象,而值为1的时候,a和b属于同一个对象。

>>> a = 10000
>>> b = 10000
>>> print a is b
False
>>> a = 1
>>> b = 1
>>> print a is b
True



对于超出了[-5, 257)之间的其他整数,Python同样提供了专门的缓冲池,供这些所谓的大整数使用,避免每次使用的时候都要不断的malloc分配内存带来的效率损耗。这块内存空间就是PyIntBlock。

struct _intblock {
struct _intblock *next;
PyIntObject objects[N_INTOBJECTS];
};
typedef struct _intblock PyIntBlock;
static PyIntBlock *block_list = NULL;
static PyIntObject *free_list = NULL;



这些内存块(blocks)由一个单向链表表示,表头是block_list,block_list始终指向最新创建的PyIntBlock对象。next指针指向下一个PyIntBlock对象,objects是一个PyIntObject数组(最终会转变成单向链表),它是真正用于存储被缓存的PyIntObjet对象的内存空间。 free_list单向链表是所有block的objects中空闲的内存。所有空闲内存通过一个链表组织起来的好处就是在Python需要新的内存来存储新的PyIntObject对象时,能够通过free_list快速获得所需的内存。
DSC0001.jpg
创建一个整数对象时,如果它在小整数范围内,就直接从小整数缓冲池中直接返回,如果不在该范围内,就开辟一个大整数缓冲池内存空间:

[intobject.c]
PyObject* PyInt_FromLong(long ival)
{
register PyIntObject *v;
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
//[1] :尝试使用小整数对象池
if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) {
v = small_ints[ival + NSMALLNEGINTS];
Py_INCREF(v);
return (PyObject *) v;
}
#endif
//[2] :为通用整数对象池申请新的内存空间
if (free_list == NULL) {
if ((free_list = fill_free_list()) == NULL)
return NULL;
}
//[3] : (inline)内联PyObject_New的行为
v = free_list;
free_list = (PyIntObject *)v->ob_type;
PyObject_INIT(v, &PyInt_Type);
v->ob_ival = ival;
return (PyObject *) v;
}



fill_free_list就是创建大整数缓冲池内存空间的逻辑,该函数返回一个free_list链表,当整数对象ival创建成功后,free_list表头就指向了v->ob_type,ob_type不是所有Python对象中表示类型信息的字段吗?怎么在这里作为一个连接指针呢?这是Python在性能与代码优雅之间取中庸之道,对名称的滥用,放弃了对类型安全的坚持。把它理解成指向下一个PyIntObject的指针即可。

[intobject.c]
static PyIntObject* fill_free_list(void)
{
PyIntObject *p, *q;
// 申请大小为sizeof(PyIntBlock)的内存空间
// block list始终指向最新创建的PyIntBlock
p = (PyIntObject *) PyMem_MALLOC(sizeof(PyIntBlock));
((PyIntBlock *)p)->next = block_list;
block_list = (PyIntBlock *)p;
//:将PyIntBlock中的PyIntObject数组(objects)转变成单向链表
p = &((PyIntBlock *)p)->objects[0];
q = p + N_INTOBJECTS;
while (--q > p)
// ob_type指向下一个未被使用的PyIntObject。
q->ob_type = (struct _typeobject *)(q-1);
q->ob_type = NULL;
return p + N_INTOBJECTS - 1;
}



不同的PyIntBlock里面的空闲的内存是怎样连接起来构成free_list的呢?这个秘密放在了整数对象垃圾回收的时候,在PyIntObject对象的tp_dealloc操作中可以看到:

[intobject.c]
static void int_dealloc(PyIntObject *v)
{
if (PyInt_CheckExact(v)) {
v->ob_type = (struct _typeobject *)free_list;
free_list = v;
}
else
v->ob_type->tp_free((PyObject *)v);
}



原来PyIntObject对象销毁时,它所占用的内存并不会释放,而是继续被Python使用,进而将free_list表头指向了这个要被销毁的对象上。

总结


  • Python中的int对象就是c语言中long类型数值的扩展
  • 小整数对象[-5, 257]在python中是共享的
  • 整数对象都是从缓冲池中获取的。
  • 整数对象回收时,内存并不会归还给系统,而是将其对象的ob_type指向free_list,供新创建的整数对象使用

参考:intobject.cy
 
原文:http://foofish.net/blog/89/python_int_implement

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-368816-1-1.html 上篇帖子: python编写SOAP服务 下篇帖子: 10分钟---Python入门
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表