设为首页 收藏本站
查看: 568|回复: 0

[经验分享] python decorator的应用和书写

[复制链接]

尚未签到

发表于 2017-5-2 09:36:27 | 显示全部楼层 |阅读模式
在我以前介绍 Python 2.4 特性的Blog中已经介绍过了decorator了,不过,那时是照猫画虎,现在再仔细描述一下它的使用。

关于decorator的详细介绍在 Python 2.4中的What’s new中已经有介绍,大家可以看一下。
如何调用decorator

基本上调用decorator有两种形式
第一种:

    @A
    def f ():
        …

这种形式是decorator不带参数的写法。最终 Python 会处理为:

    f = A(f)

还可以扩展成:

    @A
    @B
    @C
    def f ():
        …

最终 Python 会处理为:

    f = A(B(C(f)))

注:文档上写的是@A @B @C的形式,但实际上是不行的,要写成多行。而且执行顺序是按函数调用顺序来的,先最下面的C,然后是B,然后是A。因此,如果decorator有顺序话,一定要注意:先要执行的放在最下面,最后执行的放在最上面。(应该不存在这种倒序的关系)
第二种:

    @A(args)
    def f ():
        …

这种形式是decorator带参数的写法。那么 Python 会处理为:

    def f(): …
    _deco = A(args)
    f = _deco(f)

可以看出, Python 会先执行A(args)得到一个decorator函数,然后再按与第一种一样的方式进行处理。
decorator函数的定义

每一个decorator都对应有相应的函数,它要对后面的函数进行处理,要么返回原来的函数对象,要么返回一个新的函数对象。请注意,decorator只用来处理函数和类方法。
第一种:

针对于第一种调用形式

    def A(func):
        #处理func
        #如func.attr=’decorated’
        return func
    @A
    def f(args):pass

上面是对func处理后,仍返回原函数对象。这个decorator函数的参数为要处理的函数。如果要返回一个新的函数,可以为:

    def A(func):
        def new_func(args):
            #做一些额外的工作
            return func(args) #调用原函数继续进行处理
        return new_func
    @A
    def f(args):pass

要注意 new_func的定义形式要与待处理的函数相同,因此还可以写得通用一些,如:

    def A(func):
        def new_func(*args, **argkw):
            #做一些额外的工作
            return func(*args, **argkw) #调用原函数继续进行处理
        return new_func
    @A
    def f(args):pass

可以看出,在A中定义了新的函数,然后A返回这个新的函数。在新函数中,先处理一些事情,比如对参数进行检查,或做一些其它的工作,然后再调原始的函数进行处理。这种模式可以看成,在调用函数前,通过使用decorator技术,可以在调用函数之前进行了一些处理。如果你想在调用函数之后进行一些处理,或者再进一步,在调用函数之后,根据函数的返回值进行一些处理可以写成这样:

    def A(func):
        def new_func(*args, **argkw):
            result = func(*args, **argkw) #调用原函数继续进行处理
            if result:
                #做一些额外的工作
                return new_result
            else:
                return result
        return new_func
    @A
    def f(args):pass

第二种:

针对第二种调用形式

在文档上说,如果你的decorator在调用时使用了参数,那么你的decorator函数只会使用这些参数进行调用,因此你需要返回一个新的decorator函数,这样就与第一种形式一致了。

    def A(arg):
        def _A(func):
            def new_func(args):
                #做一些额外的工作
                return func(args)
            return new_func
        return _A
    @A(arg)
    def f(args):pass

可以看出A(arg)返回了一个新的 decorator _A。
decorator的应用场景

不过我也一直在想,到底decorator的魔力是什么?适合在哪些场合呢?是否我需要使用它呢?

decorator的魔力就是它可以对所修饰的函数进行加工。那么这种加工是在不改变原来函数代码的情况下进行的。有点象我知道那么一点点的AOP(面向方面编程)的想法。

它适合的场合我能想到的列举出下:

   1. 象文档中所说,最初是为了使调用staticmethod和classmethod这样的方法更方便
   2. 在某些函数执行前做一些工作,如web开发中,许多函数在调用前需要先检查一下用户是否已经登录,然后才能调用
   3. 在某此函数执行后做一些工作,如调用完毕后,根据返回状态写日志
   4. 做参数检查

可能还有许多,你可以自由发挥想象

那么我需要用它吗?

我想那要看你了。不过,我想在某些情况下,使用decorator可以增加程序的灵活性,减少耦合度。比如前面所说的用户登录检查。的确可以写一个通用的登录检查函数,然后在每个函数中进行调用。但这样会造成函数不够灵活,而且增加了与其它函数之间的结合程度。如果用户登录检查功能有所修改,比如返回值的判断发生了变化,有可能每个用到它的函数都要修改。而使用decorator不会造成这一问题。同时使用decorator的语法也使得代码简单,清晰(一但你熟悉它的语法的话)。当然你不使用它是可以的。不过,这种函数之间相互结合的方式,更符合搭积木的要求,它可以把函数功能进一步分解,使得功能足够简单和单一。然后再通过decorator的机制灵活的把相关的函数串成一个串,这么一想,还真是不错。比如下面:

    @A
    @B
    def account(args):pass

假设这是一个记帐处理函数,account只管记帐。但一个真正的记帐还有一些判断和处理,比如:B检查帐户状态,A记日志。这样的效果其实是先检查B、通过在A中的处理可以先执行account,然后再进行记日志的处理。象搭积木一样很方便,改起来也容易。甚至可以把account也写成 decorator,而下面执行的函数是一个空函数。然后再通过配置文件等方法,将decorator的组合保存起来,就基本实现功能的组装化。是不是非常理想。

Python 带给人的创造力真是无穷啊!

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-371930-1-1.html 上篇帖子: 深入了解Python暂缓列表生成器 下篇帖子: how to develop winform using python
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表