设为首页 收藏本站
查看: 985|回复: 0

[经验分享] Elasticsearch搜索类型(query type)

[复制链接]

尚未签到

发表于 2017-5-21 08:01:49 | 显示全部楼层 |阅读模式
es在查询时,可以指定搜索类型为QUERY_THEN_FETCH,QUERY_AND_FEATCH,DFS_QUERY_THEN_FEATCH和DFS_QUERY_AND_FEATCH。那么这4种搜索类型有什么区别?

分布式搜索背景介绍:
ES天生就是为分布式而生,但分布式有分布式的缺点。比如要搜索某个单词,但是数据却分别在5个分片(Shard)上面,这5个分片可能在5台主机上面。因为全文搜索天生就要排序(按照匹配度进行排名),但数据却在5个分片上,如何得到最后正确的排序呢?ES是这样做的,大概分两步。
step1、ES客户端会将这个搜索词同时向5个分片发起搜索请求,这叫Scatter,
step2、这5个分片基于本Shard独立完成搜索,然后将符合条件的结果全部返回,这一步叫Gather。
客户端将返回的结果进行重新排序和排名,最后返回给用户。也就是说,ES的一次搜索,是一次scatter/gather过程(这个跟mapreduce也很类似).


然而这其中有两个问题。
第一、数量问题。比如,用户需要搜索"双黄连",要求返回最符合条件的前10条。但在5个分片中,可能都存储着双黄连相关的数据。所以ES会向这5个分片都发出查询请求,并且要求每个分片都返回符合条件的10条记录。当ES得到返回的结果后,进行整体排序,然后取最符合条件的前10条返给用户。这种情况,ES5个shard最多会收到10*5=50条记录,这样返回给用户的结果数量会多于用户请求的数量。
第二、排名问题。上面搜索,每个分片计算分值都是基于自己的分片数据进行计算的。计算分值使用的词频率和其他信息都是基于自己的分片进行的,而ES进行整体排名是基于每个分片计算后的分值进行排序的,这就可能会导致排名不准确的问题。如果我们想更精确的控制排序,应该先将计算排序和排名相关的信息(词频率等)从5个分片收集上来,进行统一计算,然后使用整体的词频率去每个分片进行查询。

这两个问题,估计ES也没有什么较好的解决方法,最终把选择的权利交给用户,方法就是在搜索的时候指定query type。
1、query and fetch
向索引的所有分片(shard)都发出查询请求,各分片返回的时候把元素文档(document)和计算后的排名信息一起返回。这种搜索方式是最快的。因为相比下面的几种搜索方式,这种查询方法只需要去shard查询一次。但是各个shard返回的结果的数量之和可能是用户要求的size的n倍。
2、query then fetch(默认的搜索方式)
如果你搜索时,没有指定搜索方式,就是使用的这种搜索方式。这种搜索方式,大概分两个步骤,第一步,先向所有的shard发出请求,各分片只返回排序和排名相关的信息(注意,不包括文档document),然后按照各分片返回的分数进行重新排序和排名,取前size个文档。然后进行第二步,去相关的shard取document。这种方式返回的document与用户要求的size是相等的。
3、DFS query and fetch
这种方式比第一种方式多了一个初始化散发(initial scatter)步骤,有这一步,据说可以更精确控制搜索打分和排名。
4、DFS query then fetch
比第2种方式多了一个初始化散发(initial scatter)步骤。

DSF是什么缩写?初始化散发是一个什么样的过程?
从es的官方网站我们可以指定,初始化散发其实就是在进行真正的查询之前,先把各个分片的词频率和文档频率收集一下,然后进行词搜索的时候,各分片依据全局的词频率和文档频率进行搜索和排名。显然如果使用DFS_QUERY_THEN_FETCH这种查询方式,效率是最低的,因为一个搜索,可能要请求3次分片。但,使用DFS方法,搜索精度应该是最高的。
至于DFS是什么缩写,没有找到相关资料,这个D可能是Distributed,F可能是frequency的缩写,至于S可能是Scatter的缩写,整个单词可能是分布式词频率和文档频率散发的缩写。
总结一下,从性能考虑QUERY_AND_FETCH是最快的,DFS_QUERY_THEN_FETCH是最慢的。从搜索的准确度来说,DFS要比非DFS的准确度更高。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-379452-1-1.html 上篇帖子: elasticsearch中关系的处理 下篇帖子: elasticsearch 口水篇 Facet
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表