设为首页 收藏本站
查看: 1064|回复: 0

[经验分享] sql中的in与not in,exists与not exists的区别

[复制链接]

尚未签到

发表于 2017-7-14 17:38:15 | 显示全部楼层 |阅读模式
  1、in和exists
  in是把外表和内表作hash连接,而exists是对外表作loop循环,每次loop循环再对内表进行查询,一直以来认为exists比in效率高的说法是不准确的。如果查询的两个表大小相当,那么用in和exists差别不大;如果两个表中一个较小一个较大,则子查询表大的用exists,
  子查询表小的用in;
  例如:表A(小表),表B(大表)



select * from A where cc in(select cc from B)  -->效率低,用到了A表上cc列的索引;
select * from A where exists(select cc from B where cc=A.cc)  -->效率高,用到了B表上cc列的索引。
  相反的:



1 select * from B where cc in(select cc from A)  -->效率高,用到了B表上cc列的索引
2 select * from B where exists(select cc from A where cc=B.cc)  -->效率低,用到了A表上cc列的索引。
  2、not in 和not exists
  not in 逻辑上不完全等同于not exists,如果你误用了not in,小心你的程序存在致命的BUG,请看下面的例子:



1 create table #t1(c1 int,c2 int);
2 create table #t2(c1 int,c2 int);
3 insert into #t1 values(1,2);
4 insert into #t1 values(1,3);
5 insert into #t2 values(1,2);
6 insert into #t2 values(1,null);
7 select * from #t1 where c2 not in(select c2 from #t2);  -->执行结果:无
8 select * from #t1 where not exists(select 1 from #t2 where #t2.c2=#t1.c2)  -->执行结果:1  3
  正如所看到的,not in出现了不期望的结果集,存在逻辑错误。如果看一下上述两个select 语句的执行计划,也会不同,后者使用了hash_aj,所以,请尽量不要使用not in(它会调用子查询),而尽量使用not exists(它会调用关联子查询)。如果子查询中返回的任意一条记录含有空值,则查询将不返回任何记录。如果子查询字段有非空限制,这时可以使用not in,并且可以通过提示让它用hasg_aj或merge_aj连接。
  如果查询语句使用了not in,那么对内外表都进行全表扫描,没有用到索引;而not exists的子查询依然能用到表上的索引。所以无论哪个表大,用not exists都比not in 要快。
  3、in 与 = 的区别



1 select name from student where name in('zhang','wang','zhao');
  与



1 select name from student where name='zhang' or name='wang' or name='zhao'
  的结果是相同的。
  以下文章转载自:http://www.cnblogs.com/CareySon/archive/2013/01/09/2853094.html
  Sql中的三种物理连接操作

简介
  在SQL Server中,我们所常见的表与表之间的Inner Join,Outer Join都会被执行引擎根据所选的列,数据上是否有索引,所选数据的选择性转化为Loop Join,Merge Join,Hash Join这三种物理连接中的一种。理解这三种物理连接是理解在表连接时解决性能问题的基础,下面我来对这三种连接的原理,适用场景进行描述。

嵌套循环连接(Nested Loop Join)
  循环嵌套连接是最基本的连接,正如其名所示那样,需要进行循环嵌套,这种连接方式的过程可以简单的用下图展示:
DSC0000.png

  图1.循环嵌套连接的第一步
DSC0001.png

  图2.循环嵌套连接的第二步  
  由上面两个图不难看出,循环嵌套连接查找内部循环表的次数等于外部循环的行数,当外部循环没有更多的行时,循环嵌套结束。另外,还可以看出,这种连接方式需要内部循环的表有序(也就是有索引),并且外部循环表的行数要小于内部循环的行数,否则查询分析器就更倾向于Hash Join(会在本文后面讲到)。
  .通过嵌套循环连接也可以看出,随着数据量的增长这种方式对性能的消耗将呈现出指数级别的增长,所以数据量到一定程度时,查询分析器往往就会采用这种方式。
  .下面我们通过例子来看一下循环嵌套连接,利用微软的AdventureWorks数据库:
DSC0002.png

  图3.一个简单的嵌套循环连接
  图3中ProductID是有索引的,并且在循环的外部表中(Product表)符合ProductID=870的行有4688条,因此,对应的SalesOrderDetail表需要查找4688次。让我们在上面的查询中再考虑另外一个例子,如图4所示。
DSC0003.png

  图4.额外的列带来的额外的书签查找
  由图4中可以看出,由于多选择了一个UnitPrice列,导致了连接的索引无法覆盖所求查询,必须通过书签查找来进行,这也是为什么我们要养成只Select需要的列的好习惯,为了解决上面的问题,我们既可以用覆盖索引,也可以减少所需的列来避免书签查找。另外,上面符合ProductID的行仅仅只有5条,所以查询分析器会选择书签查找,假如我们将符合条件的行进行增大,查询分析器会倾向于表扫描(通常来说达到表中行数的1%以上往往就会进行table scan而不是书签查找,但这并不绝对),如图5所示。
DSC0004.png

  图5.查询分析器选择了表扫描
  可以看出,查询分析器此时选择了表扫描来进行连接,这种方式效率要低下很多,因此好的覆盖索引和Select *都是需要注意的地方。另外,上面情况即使涉及到表扫描,依然是比较理想的情况,更糟糕的情况是使用多个不等式作为连接时,查询分析器即使知道每一个列的统计分布,但却不知道几个条件的联合分布,从而产生错误的执行计划,如图6所示。
DSC0005.png

  图6.由于无法预估联合分布,导致的偏差
  由图6中,我们可以看出,估计的行数和实际的行数存在巨大的偏差,从而应该使用表扫描但查询分析器选择了书签查找,这种情况对性能的影响将会比表扫描更加巨大。具体大到什么程度呢?我们可以通过强制表扫描和查询分析器的默认计划进行比对,如图7所示。
DSC0006.png

  图7.强制表扫描性能反而更好

合并连接(Merge Join)
  谈到合并连接,我突然想起在西雅图参加SQL Pass峰会晚上酒吧排队点酒,由于我和另外一哥们站错了位置,貌似我们两个在插队一样,我赶紧说:I’m sorry,i thought here is end of line。对方无不幽默的说:”It’s OK,In SQL Server,We called it merge join”。
  由上面的小故事不难看出,Merge Join其实上就是将两个有序队列进行连接,需要两端都已经有序,所以不必像Loop Join那样不断的查找循环内部的表。其次,Merge Join需要表连接条件中至少有一个等号查询分析器才会去选择Merge Join。
  Merge Join的过程我们可以简单用下面图进行描述:
DSC0007.png

  图8.Merge Join第一步
  Merge Join首先从两个输入集合中各取第一行,如果匹配,则返回匹配行。假如两行不匹配,则有较小值的输入集合+1,如图9所示。
DSC0008.png

  图9.更小值的输入集合向下进1
  用C#代码表示Merge Join的话如代码1所示。



1 public class MergeJoin
2 {
3     // Assume that left and right are already sorted
4     public static Relation Sort(Relation left, Relation right)
5     {
6         Relation output = new Relation();
7         while (!left.IsPastEnd() && !right.IsPastEnd())
8         {
9             if (left.Key == right.Key)
10             {
11                 output.Add(left.Key);
12                 left.Advance();
13                 right.Advance();
14             }
15             else if (left.Key < right.Key)
16                 left.Advance();
17             else //(left.Key > right.Key)
18                 right.Advance();
19         }
20         return output;
21     }
22 }
  因此,通常来说Merge Join如果输入两端有序,则Merge Join效率会非常高,但是如果需要使用显式Sort来保证有序实现Merge Join的话,那么Hash Join将会是效率更高的选择。但是也有一种例外,那就是查询中存在order by,group by,distinct等可能导致查询分析器不得不进行显式排序,
  那么对于查询分析器来说,反正都已经进行显式Sort了,何不一石二鸟的直接利用Sort后的结果进行成本更小的MERGE JOIN?在这种情况下,Merge Join将会是更好的选择。
  另外,我们可以由Merge Join的原理看出,当连接条件为不等式(但不包括!=),比如说> < >=等方式时,Merge Join有着更好的效率。
  下面我们来看一个简单的Merge Join,这个Merge Join是由聚集索引和非聚集索引来保证Merge Join的两端有序,如图10所示。
DSC0009.png

  图10.由聚集索引和非聚集索引保证输入两端有序
  当然,当Order By,Group By时查询分析器不得不用显式Sort,从而可以一箭双雕时,也会选择Merge Join而不是Hash Join,如图11所示。
DSC00010.png

  图11.一箭双雕的Merge Join  

哈希匹配(Hash Join)
  哈希匹配连接相对前面两种方式更加复杂一些,但是哈希匹配对于大量数据,并且无序的情况下性能均好于Merge Join和Loop Join。对于连接列没有排序的情况下(也就是没有索引),查询分析器会倾向于使用Hash Join。
  哈希匹配分为两个阶段,分别为生成和探测阶段,首先是生成阶段,第一阶段生成阶段具体的过程可以如图12所示。
DSC00011.png

  图12.哈希匹配的第一阶段
  图12中,将输入源中的每一个条目经过散列函数的计算都放到不同的Hash Bucket中,其中Hash Function的选择和Hash Bucket的数量都是黑盒,微软并没有公布具体的算法,但我相信已经是非常好的算法了。
  另外在Hash Bucket之内的条目是无序的。通常来讲,查询优化器都会使用连接两端中比较小的哪个输入集来作为第一阶段的输入源。
  接下来是探测阶段,对于另一个输入集合,同样针对每一行进行散列函数,确定其所应在的Hash Bucket,在针对这行和对应Hash Bucket中的每一行进行匹配,如果匹配则返回对应的行。
  通过了解哈希匹配的原理不难看出,哈希匹配涉及到散列函数,所以对CPU的消耗会非常高,此外,在Hash Bucket中的行是无序的,所以输出结果也是无序的。图13是一个典型的哈希匹配,其中查询分析器使用了表数据量比较小的Product表作为生成,
  而使用数据量大的SalesOrderDetail表作为探测。
DSC00012.png

  图13.一个典型的哈希匹配连接
  上面的情况都是内存可以容纳下生成阶段所需的内存,如果内存吃紧,则还会涉及到Grace哈希匹配和递归哈希匹配,这就可能会用到TempDB从而吃掉大量的IO。这里就不细说了,有兴趣的同学可以移步:http://msdn.microsoft.com/zh-cn/library/aa178403(v=SQL.80).aspx。

总结
  下面我们通过一个表格简单总结这几种连接方式的消耗和使用场景:

嵌套循环连接合并连接哈希连接
适用场景外层循环小,内存循环条件列有序输入两端都有序数据量大,且没有索引
CPU低(如果没有显式排序)
内存低(如果没有显式排序)
IO可能高可能低可能高可能低
  理解SQL Server这几种物理连接方式对于性能调优来说必不可少,很多时候当筛选条件多表连接多时,查询分析器就可能不是那么智能了,因此理解这几种连接方式对于定位问题变得尤为重要。此外,我们也可以通过从业务角度减少查询范围来减少低下性能连接的可能性。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-393906-1-1.html 上篇帖子: SQL之经典SQL语句大全 下篇帖子: sql跨库查询
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表