设为首页 收藏本站
查看: 1026|回复: 0

[经验分享] cassandra mongodb选择——cassandra:分布式扩展好,写性能强,以及可以预料的查询;mongodb:非事务,支持复杂查询,但是不适合报表

[复制链接]

尚未签到

发表于 2017-12-16 14:35:23 | 显示全部楼层 |阅读模式
  Of course, like any technology MongoDB has its strengths and weaknesses. MongoDB is designed for OLTP workloads. It can do complex queries, but it’s not necessarily the best fit for reporting-style workloads. Or if you need complex transactions, it’s not going to be a good choice. However, MongoDB’s simplicity makes it a great place to start.
  mongodb——非事务,支持复杂查询,但是不适合报表
  This ease of scaling, coupled with exceptional write performance (“All you’re doing is appending to the end of a log file”) and predictable query performance, add up to a high-performance workhorse in Cassandra.
  cassandra——分布式扩展好,写性能强,以及可以预料的查询
  Cassandra does not support Range based row-scans which may be limiting in certain use-cases. Cassandra is well suited for supporting single-row queries, or selecting multiple rows based on a Column-Value index.Cassandra supports secondary indexes on column families where the column name is known. Aggregations in Cassandra are not supported by the Cassandra nodes - client must provide aggregations. When the aggregation requirement spans multiple rows, Random Partitioning makes aggregations very difficult for the client. Recommendation is to use Storm or Hadoop for aggregations.
  摘自:http://www.infoworld.com/article/2848722/nosql/mongodb-cassandra-hbase-three-nosql-databases-to-watch.html
  Comparison Of NoSQL Databases HBase, Cassandra & MongoDB:
  HBase:
  Key characteristics:
  ·         Distributed and scalable big data store
  ·         Strong consistency
  ·         Built on top of Hadoop HDFS
  ·         CP on CAP
  Good for:
  ·         Optimized for read
  ·         Well suited for range based scan
  ·         Strict consistency
  ·         Fast read and write with scalability
  Not good for:

  ·        >  ·         Applications need full table scan
  ·         Data to be aggregated, rolled up, analyzed cross rows

  Usage Case:>  Cassandra:
  Key characteristics:
  ·         High availability
  ·         Incremental scalability
  ·         Eventually consistent
  ·         Trade-offs between consistency and latency
  ·         Minimal administration
  ·         No SPF (Single point of failure) – all nodes are the same in Cassandra
  ·         AP on CAP
  Good for:
  ·         Simple setup, maintenance code
  ·         Fast random read/write
  ·         Flexible parsing/wide column requirement
  ·         No multiple secondary index needed
  Not good for:
  ·         Secondary index

  ·        >  ·         Transactional operations (Rollback, Commit)
  ·         Primary & Financial record
  ·         Stringent and authorization needed on data
  ·         Dynamic queries/searching  on column data
  ·         Low latency
  Usage Case: Twitter, Travel portal
  MongoDB:
  Key characteristics:
  ·         Schemas to change as applications evolve (Schema-free)
  ·         Full index support for high performance
  ·         Replication and failover for high availability
  ·         Auto Sharding for easy Scalability
  ·         Rich document based queries for easy readability
  ·         Master-slave model
  ·         CP on CAP
  Good for:
  ·         RDBMS replacement for web applications
  ·         Semi-structured content management
  ·         Real-time analytics and high-speed logging, caching and high scalability
  ·         Web 2.0, Media, SAAS, Gaming
  Not good for:
  ·         Highly transactional system
  ·         Applications with traditional database requirements such as foreign key constraints
  Usage Case: Craigslist, Foursquare
  摘自:https://www.linkedin.com/pulse/real-comparison-nosql-databases-hbase-cassandra-mongodb-sahu
  针对分析任务:
  For analytics, MongoDB provides a custom map/reduce implementation; Cassandra provides native Hadoop support, including for Hive (a SQL data warehouse built on Hadoop map/reduce) and Pig (a Hadoop-specific analysis language that many think is a better fit for map/reduce workloads than SQL).
  http://stackoverflow.com/questions/2892729/mongodb-vs-cassandra

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-424718-1-1.html 上篇帖子: 启动mongodb报错问题 下篇帖子: [原创]实现MongoDB数据库审计SQL语句的脚本
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表