设为首页 收藏本站
查看: 1115|回复: 0

[经验分享] Hadoop中的Partitioner浅析

[复制链接]

尚未签到

发表于 2017-12-17 07:46:20 | 显示全部楼层 |阅读模式
  转自:http://blog.csdn.net/b1198103958/article/details/47169105
  Hadoop里面的MapReduce编程模型,非常灵活,大部分环节我们都可以重写它的API,来灵活定制我们自己的一些特殊需求。
  今天散仙要说的这个分区函数Partitioner,也是一样如此,下面我们先来看下Partitioner的作用:
  对map端输出的数据key作一个散列,使数据能够均匀分布在各个reduce上进行后续操作,避免产生热点区。
  大部分情况下,我们都会使用默认的分区函数,但有时我们又有一些,特殊的需求,而需要定制Partition来完成我们的业务,案例如下:
  对如下数据,按字符串的长度分区,长度为1的放在一个,2的一个,3的各一个。
  河南省;1
  河南;2
  中国;3
  中国人;4
  大;1
  小;3
  中;11
  这时候,我们使用默认的分区函数,就不行了,所以需要我们定制自己的Partition,首先分析下,我们需要3个分区输出,所以在设置reduce的个数时,一定要设置为3,其次在partition里,进行分区时,要根据长度具体分区,而不是根据字符串的hash码来分区。
  总结
  (Partition)分区出现的必要性,如何使用Hadoop产生一个全局排序的文件?最简单的方法就是使用一个分区,但是该方法在处理大型文件时效率极低,因为一台机器必须处理所有输出文件,从而完全丧失了MapReduce所提供的并行架构的优势。事实上我们可以这样做,首先创建一系列排好序的文件;其次,串联这些文件(类似于归并排序);最后得到一个全局有序的文件。主要的思路是使用一个partitioner来描述全局排序的输出。比方说我们有1000个1-10000的数据,跑10个ruduce任务, 如果我们运行进行partition的时候,能够将在1-1000中数据的分配到第一个reduce中,1001-2000的数据分配到第二个reduce中,以此类推。即第n个reduce所分配到的数据全部大于第n-1个reduce中的数据。这样,每个reduce出来之后都是有序的了,我们只要cat所有的输出文件,变成一个大的文件,就都是有序的了
  基本思路就是这样,但是现在有一个问题,就是数据的区间如何划分,在数据量大,还有我们并不清楚数据分布的情况下。一个比较简单的方法就是采样,假如有一亿的数据,我们可以对数据进行采样,如取10000个数据采样,然后对采样数据分区间。在Hadoop中,patition我们可以用TotalOrderPartitioner替换默认的分区。然后将采样的结果传给他,就可以实现我们想要的分区。在采样时,我们可以使用hadoop的几种采样工具,RandomSampler,InputSampler,IntervalSampler。
  这样,我们就可以对利用分布式文件系统进行大数据量的排序了,我们也可以重写Partitioner类中的compare函数,来定义比较的规则,从而可以实现字符串或其他非数字类型的排序,也可以实现二次排序乃至多次排序。
  combine、partition和shuffle的区别:
  combine和partition都是函数,中间的步骤应该只有shuffle!
  combine分为map端和reduce端,作用是把同一个key的键值对合并在一起,可以自定义的。
  combine函数把一个map函数产生的<key,value>对(多个key,value)合并成一个新的<key2,value2>.将新的<key2,value2>作为输入到reduce函数中
  这个value2亦可称之为values,因为有多个。这个合并的目的是为了减少网络传输。
  partition是分割map每个节点的结果,按照key分别映射给不同的reduce,也是可以自定义的。这里其实可以理解归类。
  我们对于错综复杂的数据归类。比如在动物园里有牛羊鸡鸭鹅,他们都是混在一起的,但是到了晚上他们就各自牛回牛棚,羊回羊圈,鸡回鸡窝。partition的作用就是把这些数据归类。只不过在写程序的时候,mapreduce使用哈希HashPartitioner帮我们归类了。这个我们也可以自定义。
  shuffle就是map和reduce之间的过程,包含了两端的combine和partition。
  Map的结果,会通过partition分发到Reducer上,Reducer做完Reduce操作后,通过OutputFormat,进行输出
  shuffle阶段的主要函数是fetchOutputs(),这个函数的功能就是将map阶段的输出,copy到reduce 节点本地。
  补充:
  Map的结果,会通过partition分发到Reducer上,Reducer做完Reduce操作后,通过OutputFormat,进行输出,下面我们就来分析参与这个过程的类。
  Mapper的结果,可能送到Combiner做合并,Combiner在系统中并没有自己的基类,而是用Reducer作为Combiner的基类,他们对外的功能是一样的,只是使用的位置和使用时的上下文不太一样而已。Mapper最终处理的键值对<key, value>,是需要送到Reducer去合并的,合并的时候,有相同key的键/值对会送到同一个Reducer那。哪个key到哪个Reducer的分配过程,是由Partitioner规定的。它只有一个方法,
  getPartition(Text key, Text value, int numPartitions)  
  输入是Map的结果对<key, value>和Reducer的数目,输出则是分配的Reducer(整数编号)。就是指定Mappr输出的键值对到哪一个reducer上去。系统缺省的Partitioner是HashPartitioner,它以key的Hash值对Reducer的数目取模,得到对应的Reducer。这样保证如果有相同的key值,肯定被分配到同一个reducre上。如果有N个reducer,编号就为0,1,2,3……(N-1)。
  Reducer是所有用户定制Reducer类的基类,和Mapper类似,它也有setup,reduce,cleanup和run方法,其中setup和cleanup含义和Mapper相同,reduce是真正合并Mapper结果的地方,它的输入是key和这个key对应的所有value的一个迭代器,同时还包括Reducer的上下文。系统中定义了两个非常简单的Reducer,IntSumReducer和LongSumReducer,分别用于对整形/长整型的value求和。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-424923-1-1.html 上篇帖子: hadoop fs 获取文件大小 下篇帖子: Hadoop Webhdfs
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表