|
一、线程介绍
处理线程的模块是threading,multiprocessing模块处理方式跟threading相似
开启线程的两种方式:
例子:
from threading import Thread
from multiprocessing import Process
def work(name):
print('%s say hello' %name)
if __name__ == '__main__':
t = Thread(target=work, args=('hyh',))
t.start()
print('主线程')
class Work(Thread):
def __init__(self,name):
super().__init__()
self.name = name
def run(self):
print('%s say hello' %self.name)
if __name__ == '__main__':
t = Work('hyh')
t.start()
print('主线程')
二、线程方法
queue方法
例子:
import queue
q = queue.Queue(3) #先进先出
q.put(1)
q.put('hyh')
q.put([1,2,3,4])
print(q.get())
print(q.get())
print(q.get())
q = queue.LifoQueue() #后进先出
q.put(1)
q.put('hyh')
q.put([1,2,3,4])
print(q.get())
print(q.get())
print(q.get())
q = queue.PriorityQueue() #优先级,数字越小优先级越高
q.put((10, 'a'))
q.put((9, 'b'))
q.put((11, 'c'))
print(q.get())
print(q.get())
print(q.get())
线程其他方法
例子:
import time
from threading import Thread
import threading
def work():
time.sleep(2)
print('%s say hello' %(threading.current_thread().getName()))
if __name__ == '__main__':
t = Thread(target=work)
t.setDaemon(True) #设置成守护线程
t.start()
t.join()
print(threading.enumerate()) #当前活跃的线程对象,是一个列表形式
print(threading.active_count()) #当前活跃的线程数目
print('主线程', threading.current_thread().getName()) #线程名字
三、python全局解释器锁GIL
python同一进程的线程利用不了多核优势,因为一个线程运行时获取GIL锁,等到运行结束释放GIL,
其它线程才能申请GIL
现在的计算机基本上都是多核,python对于计算密集型的任务开多线程的效率并不能带来多大性能上
的提升,甚至不如串行(没有大量切换),但是,对于IO密集型的任务效率还是有显著提升的
例子:
计算密集型
from threading import Thread
from multiprocessing import Process
import os
import time
def work():
res = 0
for i in range(1000000):
res += i
if __name__ == '__main__':
t_l = []
start_time = time.time()
for i in range(300):
t = Thread(target=work)
t_l.append(t)
t.start()
for i in t_l:
i.join()
stop_time = time.time()
print('run time is %s' %(stop_time - start_time))
print('主线程')
IO密集型
from threading import Thread
from multiprocessing import Process
import time
import os
def work():
time.sleep(2)
print(os.getpid())
if __name__ == '__main__':
t_l = []
start_time = time.time()
for i in range(1000):
t = Thread(target=work)
t_l.append(t)
t.start()
for t in t_l:
t.join()
stop_time = time.time()
print('run time is %s' %(stop_time - start_time))
线程锁Lock
import threading
R=threading.Lock()
R.acquire()
'''
对公共数据的操作
'''
R.release()
死锁
例子:
from threading import Thread,Lock
import time
mutexA = Lock()
mutexB = Lock()
class MyThread(Thread):
def run(self):
self.func1()
self.func2()
def func1(self):
mutexA.acquire()
print('\033[41m%s 拿到A锁\033[0m' %self.name)
mutexB.acquire()
print('\033[42m%s 拿到B锁\033[0m' %self.name)
mutexB.release()
mutexA.release()
def func2(self):
mutexB.acquire()
print('\033[43m%s 拿到B锁\033[0m' %self.name)
time.sleep(2)
mutexA.acquire()
print('\033[44m%s拿到A锁\033[0m' %self.name)
mutexA.release()
mutexB.release()
if __name__ == '__main__':
for i in range(10):
t = MyThread()
t.start()
输出结果:
Thread-1 拿到A锁
Thread-1 拿到B锁
Thread-1 拿到B锁
Thread-2 拿到A锁
卡住。。。
递归锁RLock
这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可
以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子
如果使用RLock代替Lock,则不会发生死锁
from threading import Thread,RLock
import time
mutex = RLock()
class MyThread(Thread):
def run(self):
self.func1()
self.func2()
def func1(self):
mutex.acquire()
print('\033[41m%s 拿到A锁\033[0m' %self.name)
mutex.acquire()
print('\033[42m%s 拿到B锁\033[0m' %self.name)
mutex.release()
mutex.release()
def func2(self):
mutex.acquire()
print('\033[43m%s 拿到B锁\033[0m' %self.name)
time.sleep(2)
mutex.acquire()
print('\033[44m%s拿到A锁\033[0m' %self.name)
mutex.release()
mutex.release()
if __name__ == '__main__':
for i in range(10):
t = MyThread()
t.start()
信号量Semahpore
Semaphore管理一个内置的计数器,
每当调用acquire()时内置计数器-1;
调用release() 时内置计数器+1;
计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()
例子:
import threading
import time
semaphore = threading.Semaphore(5)
def func():
if semaphore.acquire():
print(threading.current_thread().getName() + ' get spmaphore')
time.sleep(2)
semaphore.release()
for i in range(20):
t1 = threading.Thread(target=func)
t1.start()
event对象
线程的一个关键特性是每个线程都是独立运行且状态不可预测。如果程序中的其 他线程需要通过判断
某个线程的状态来确定自己下一步的操作,这时线程同步问题就 会变得非常棘手。为了解决这些问题,
我们需要使用threading库中的Event对象。 对象包含一个可由线程设置的信号标志,它允许线程等待某
些事件的发生。在 初始情况下,Event对象中的信号标志被设置为假。如果有线程等待一个Event对象,
而这个Event对象的标志为假,那么这个线程将会被一直阻塞直至该标志为真。一个线程如果将一个
Event对象的信号标志设置为真,它将唤醒所有等待这个Event对象的线程。如果一个线程等待一个已经
被设置为真的Event对象,那么它将忽略这个事件, 继续执行
event.isSet():返回event的状态值;
event.wait():如果 event.isSet()==False将阻塞线程;
event.set(): 设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度;
event.clear():恢复event的状态值为False
例子:
from threading import Thread,Event
import threading
import time,random
def conn_mysql():
print('\033[42m%s 等待链接Mysql...\033[0m' %threading.current_thread().getName())
event.wait()
print('\033[42mMysql初始化成功,%s开始连接...\033[0m' %threading.current_thread().getName())
def check_mysql():
print('\033[41m正在检查mysql...\033[0m')
time.sleep(random.randint(1,3))
event.set()
time.sleep(random.randint(1,3))
if __name__ == '__main__':
event = Event()
t1 = Thread(target=conn_mysql)
t2 = Thread(target=conn_mysql)
t3 = Thread(target=check_mysql)
t1.start()
t2.start()
t3.start()
wait(time)设置超时时间
from threading import Thread,Event
import threading
import time,random
def conn_mysql():
while not event.is_set():
print('\033[42m%s 等待连接mysql...\033[0m' %threading.current_thread().getName())
event.wait(0.1)
print('\033[42mMysql初始化成功,%s开始连接...\033[0m' %threading.current_thread().getName())
def check_mysql():
print('\033[41m正在检查mysql...\033[0m')
time.sleep(random.randint(1,3))
event.set()
time.sleep(random.randint(1,3))
if __name__ == '__main__':
event=Event()
t1 = Thread(target=conn_mysql)
t2 = Thread(target=conn_mysql)
t3 = Thread(target=check_mysql)
t1.start()
t2.start()
t3.start()
Timer定时器,指定n秒后执行操作
例子:
from threading import Timer
def hello():
print("hello, world")
t = Timer(3, hello)
t.start()
四、协程
协程: 单线程下的并发,又称微线程,协程是一种用户态的轻量级线程,即协程是由用户程序自己控制
调度的
要实现协程,关键在于用户程序自己控制程序切换,切换之前必须由用户程序自己保存协程上一次调用
时的状态,如此,每次重新调用时,能够从上次的位置继续执行
我们之前已经学习过一种在单线程下可以保存程序运行状态的方法,即yield
不使用yield
import time
def consumer(item):
x = 1111111111111
y = 222222222222222
z = 3333333333333333
x1 = 122324234534534
x2 = 21324354654654
x3 = 3243565432435
def producer(target,seq):
for item in seq:
target(item)每次调用函数,会临时产生名称空间,调用结束则释放,循环100000000次,则重复这么多次的创建和释放,开销非常大
start_time = time.time()
producer(consumer,range(100000000))
stop_time = time.time()
print('run time is:%s' %(stop_time - start_time))
打印结果:run time is:14.8908851146698
使用yield
import time
def init(func):
def wrapper(*args, **kwargs):
g = func(*args, **kwargs)
next(g)
return g
return wrapper
@init
def consumer():
x = 1111111111111
y = 222222222222222
z = 3333333333333333
x1 = 122324234534534
x2 = 21324354654654
x3 = 3243565432435
while True:
item = yield
def producer(target, seq):
for item in seq:
target.send(item)
start_time = time.time()
producer(consumer(), range(100000000))
stop_time=time.time()
print('run time is:%s' %(stop_time-start_time))
greenlet实现线程的切换
例子:
from greenlet import greenlet
def test1():
print('test1,first')
gr2.switch()
print('test1,second')
gr2.switch()
def test2():
print('test2,first')
gr1.switch()
print('test2,second')
gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()
switch传参数
import time
from greenlet import greenlet
def eat(name):
print('%s eat food 1' %name)
gr2.switch('alex fly fly fly')
print('%s eat food 2' %name)
gr2.switch()
def play_phone(name):
print('%s play 1' %name)
gr1.switch()
print('%s play 2' %name)
gr1 = greenlet(eat)
gr2=greenlet(play_phone)
gr1.switch(name='egon啦啦啦')
gevent第三方库
Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。
g1=gevent.spawn()创建一个协程对象g1
io阻塞切换
例子:
import gevent
import time
def eat():
print('eat food 1')
gevent.sleep(2)
print('eat food 2')
def play_phone():
print('play phone 1')
gevent.sleep(1)
print('play phone 2')
g1 = gevent.spawn(eat)
g2 = gevent.spawn(play_phone)
gevent.joinall([g1, g2])
print('主')
gevent.sleep(2)模拟的是gevent可以识别的io阻塞
time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码
例子:
from gevent import monkey;monkey.patch_all()
import gevent
import time
def eat():
print('eat food 1')
time.sleep(2)
print('eat food 2')
def play_phone():
print('play phone 1')
time.sleep(1)
print('play phone 2')
g1 = gevent.spawn(eat)
g2 = gevent.spawn(play_phone)
gevent.joinall([g1, g2])
print('主')
gevent实现单线程下的socket并发
例子:
服务端
from gevent import monkey;monkey.patch_all()
from socket import *
import gevent
def server(server_ip, port):
s = socket(AF_INET, SOCK_STREAM)
s.setsockopt(SOL_SOCKET,SO_REUSEADDR, 1)
s.bind((server_ip,port))
s.listen(5)
while True:
conn, addr = s.accept()
gevent.spawn(talk, conn, addr)
def talk(conn,addr):
try:
while True:
res = conn.recv(1024)
print('client %s:%s msg: %s' %(addr[0], addr[1], res))
conn.send(res.upper())
except Exception as e:
print(e)
finally:
conn.close()
if __name__ == '__main__':
server('127.0.0.1', 8080)
客户端
#!/usr/bin/python
# --*-- coding: utf-8 --*--
from socket import *
client=socket(AF_INET, SOCK_STREAM)
client.connect(('127.0.0.1', 8080))
while True:
msg = input('>>: ').strip()
if not msg:continue
client.send(msg.encode('utf-8'))
msg = client.recv(1024)
print(msg.decode('utf-8')) |
|