设为首页 收藏本站
查看: 1337|回复: 0

[经验分享] python使用matplotlib绘图

[复制链接]

尚未签到

发表于 2015-4-19 05:56:10 | 显示全部楼层 |阅读模式
      matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中。它的文档相当完备,并且 Gallery页面 中有上百幅缩略图,打开之后都有源程序。因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定。  -----引用自:http://hyry.dip.jp/pydoc/matplotlib_intro.html
  你可以从 http://www.lfd.uci.edu/~gohlke/pythonlibs/#matplotlib 下载安装matplotlib。
  这篇我们用matplotlib从构造最简单的bar一步一步向复杂的bar前行。什么是最简单的bar,看如下语句你就知道她有多么简单了:

import matplotlib.pyplot as plt  
plt.bar(left = 0,height = 1)
plt.show()

执行效果:
DSC0000.png

是的,三句话就可以了,是我见过最简单的绘图语句。首先我们import了matplotlib.pyplot ,然后直接调用其bar方法,最后用show显示图像。我解释一下bar中的两个参数:

  • left:柱形的左边缘的位置,如果我们指定1那么当前柱形的左边缘的x值就是1.0了
  • height:这是柱形的高度,也就是Y轴的值了

left,height除了可以使用单独的值(此时是一个柱形),也可以使用元组来替换(此时代表多个矩形)。例如,下面的例子:

import matplotlib.pyplot as plt
plt.bar(left = (0,1),height = (1,0.5))
plt.show()  

DSC0001.png

可以看到 left = (0,1)的意思就是总共有两个矩形,第一个的左边缘为0,第二个的左边缘为1。height参数同理。

当然,可能你还觉得这两个矩形“太胖”了。此时我们可以通过指定bar的width参数来设置它们的宽度。

import matplotlib.pyplot as plt
plt.bar(left = (0,1),height = (1,0.5),width = 0.35)
plt.show()

DSC0002.png

此时又来需求了,我需要标明x,y轴的说明。比如x轴是性别,y轴是人数。实现也很简单,看代码:


import matplotlib.pyplot as plt
plt.xlabel(u'性别')
plt.ylabel(u'人数')
plt.bar(left = (0,1),height = (1,0.5),width = 0.35)
plt.show()

DSC0003.png

注意这里的中文一定要用u(3.0以上好像不用,我用的2.7),因为matplotlib只支持unicode。接下来,让我们在x轴上的每个bar进行说明。比如第一个是“男”,第二个是“女”。

import matplotlib.pyplot as plt
plt.xlabel(u'性别')
plt.ylabel(u'人数')
plt.xticks((0,1),(u'男',u'女'))
plt.bar(left = (0,1),height = (1,0.5),width = 0.35)
plt.show()

DSC0004.png

plt.xticks的用法和我们前面说到的left,height的用法差不多。如果你有几个bar,那么就是几维的元组。第一个是文字的位置,第二个是具体的文字说明。不过这里有个问题,很显然我们指定的位置有些“偏移”,最理想的状态应该在每个矩形的中间。你可以更改(0,1)=>( (0+0.35)/2 ,(1+0.35)/2 )不过这样比较麻烦。我们可以通过直接指定bar方法里面的align="center"就可以让文字居中了。


import matplotlib.pyplot as plt
plt.xlabel(u'性别')
plt.ylabel(u'人数')
plt.xticks((0,1),(u'男',u'女'))
plt.bar(left = (0,1),height = (1,0.5),width = 0.35,align="center")
plt.show()

DSC0005.png

接下来,我们还可以给图标加入标题。


plt.title(u"性别比例分析")

DSC0006.png

当然,还有图例也少不掉:

import matplotlib.pyplot as plt
plt.xlabel(u'性别')
plt.ylabel(u'人数')

plt.title(u"性别比例分析")
plt.xticks((0,1),(u'男',u'女'))
rect = plt.bar(left = (0,1),height = (1,0.5),width = 0.35,align="center")
plt.legend((rect,),(u"图例",))
plt.show()

DSC0007.png

注意这里的legend方法,里面的参数必须是元组。即使你只有一个图例,不然显示不正确。

接下来,我们还可以在每个矩形的上面标注它具体点Y值。这里,我们需要用到一个通用的方法:

def autolabel(rects):
    for rect in rects:
        height = rect.get_height()
        plt.text(rect.get_x()+rect.get_width()/2., 1.03*height, '%s' % float(height))

其中plt.text的参数分别是:x坐标,y坐标,要显示的文字。所以,调用代码如下:

import matplotlib.pyplot as plt
def autolabel(rects):
    for rect in rects:
        height = rect.get_height()
        plt.text(rect.get_x()+rect.get_width()/2., 1.03*height, '%s' % float(height))
plt.xlabel(u'性别')
plt.ylabel(u'人数')

plt.title(u"性别比例分析")
plt.xticks((0,1),(u'男',u'女'))
rect = plt.bar(left = (0,1),height = (1,0.5),width = 0.35,align="center")
plt.legend((rect,),(u"图例",))
autolabel(rect)
plt.show()

DSC0008.png

到这里这个图形已经基本完备了,不过可以看到你一个矩形紧靠这顶部,不是很好看。最好能够空出一段距离出来就好了。这个设置我没有找到具体的属性。不过,我还是通过一个小技巧来实现了。就是bar属性的yerr参数。一旦设置了这个参数,那么对应的矩形上面就会有一个竖着的线,我不知道他是干什么的。不过当我把这个值设置的很小的时候,上面的空白就自动空出来了。如图:



rect = plt.bar(left = (0,1),height = (1,0.5),width = 0.35,align="center",yerr=0.000001)

DSC0009.png

对于左右两边能否空出空白来暂时还没有找到(xerr参数不行)

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-58464-1-1.html 上篇帖子: 使用python的Flask实现一个RESTful API服务器端[翻译] 下篇帖子: Python图表绘制:matplotlib绘图库入门
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表