设为首页 收藏本站
查看: 1146|回复: 0

[经验分享] k-means聚类算法python实现

[复制链接]

尚未签到

发表于 2015-4-20 13:41:05 | 显示全部楼层 |阅读模式
K-means聚类算法

算法优缺点:


  优点:容易实现
缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢
使用数据类型:数值型数据

算法思想
  k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去。
  1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好。另一种则是根据具体的需求确定,比如说进行衬衫尺寸的聚类你可能就会考虑分成三类(L,M,S)等
  2.然后我们需要选择最初的聚类点(或者叫质心),这里的选择一般是随机选择的,代码中的是在数据范围内随机选择,另一种是随机选择数据中的点。这些点的选择会很大程度上影响到最终的结果,也就是说运气不好的话就到局部最小值去了。这里有两种处理方法,一种是多次取均值,另一种则是后面的改进算法(bisecting K-means)
  3.终于我们开始进入正题了,接下来我们会把数据集中所有的点都计算下与这些质心的距离,把它们分到离它们质心最近的那一类中去。完成后我们则需要将每个簇算出平均值,用这个点作为新的质心。反复重复这两步,直到收敛我们就得到了最终的结果。

函数
  loadDataSet(fileName)
从文件中读取数据集
distEclud(vecA, vecB)
计算距离,这里用的是欧氏距离,当然其他合理的距离都是可以的
randCent(dataSet, k)
随机生成初始的质心,这里是虽具选取数据范围内的点
kMeans(dataSet, k, distMeas=distEclud, createCent=randCent)
kmeans算法,输入数据和k值。后面两个事可选的距离计算方式和初始质心的选择方式
show(dataSet, k, centroids, clusterAssment)
可视化结果








  • 1 #coding=utf-8
    2 from numpy import *
    3
    4 def loadDataSet(fileName):
    5     dataMat = []
    6     fr = open(fileName)
    7     for line in fr.readlines():
    8         curLine = line.strip().split('\t')
    9         fltLine = map(float, curLine)
    10         dataMat.append(fltLine)
    11     return dataMat
    12     
    13 #计算两个向量的距离,用的是欧几里得距离
    14 def distEclud(vecA, vecB):
    15     return sqrt(sum(power(vecA - vecB, 2)))
    16
    17 #随机生成初始的质心(ng的课说的初始方式是随机选K个点)   
    18 def randCent(dataSet, k):
    19     n = shape(dataSet)[1]
    20     centroids = mat(zeros((k,n)))
    21     for j in range(n):
    22         minJ = min(dataSet[:,j])
    23         rangeJ = float(max(array(dataSet)[:,j]) - minJ)
    24         centroids[:,j] = minJ + rangeJ * random.rand(k,1)
    25     return centroids
    26     
    27 def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
    28     m = shape(dataSet)[0]
    29     clusterAssment = mat(zeros((m,2)))#create mat to assign data points
    30                                       #to a centroid, also holds SE of each point
    31     centroids = createCent(dataSet, k)
    32     clusterChanged = True
    33     while clusterChanged:
    34         clusterChanged = False
    35         for i in range(m):#for each data point assign it to the closest centroid
    36             minDist = inf
    37             minIndex = -1
    38             for j in range(k):
    39                 distJI = distMeas(centroids[j,:],dataSet[i,:])
    40                 if distJI < minDist:
    41                     minDist = distJI; minIndex = j
    42             if clusterAssment[i,0] != minIndex:
    43                 clusterChanged = True
    44             clusterAssment[i,:] = minIndex,minDist**2
    45         print centroids
    46         for cent in range(k):#recalculate centroids
    47             ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster
    48             centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean
    49     return centroids, clusterAssment
    50     
    51 def show(dataSet, k, centroids, clusterAssment):
    52     from matplotlib import pyplot as plt  
    53     numSamples, dim = dataSet.shape  
    54     mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-58925-1-1.html 上篇帖子: python在windows系统中获取进程的cpu占用率 下篇帖子: python学习笔记-第2章节 分支,循环,还有条件
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表