设为首页 收藏本站
查看: 1259|回复: 0

[经验分享] 绘图: Python matplotlib简介

[复制链接]

尚未签到

发表于 2015-4-21 05:27:38 | 显示全部楼层 |阅读模式
  作者:Vamei 出处:http://www.iyunv.com/vamei 欢迎转载,也请保留这段声明。谢谢!
  
  matplotlib是基于numpy的一套Python工具包。这个包提供了丰富的数据绘图工具,主要用于绘制一些统计图形。你可以找到很多各式各样的例子:
   DSC0000.png
  
通过数据绘图,我们可以将枯燥的数字转换成容易被人们接受的图表,从而让人留下更加深刻的印象。实际上,早在一百多年前,南丁格尔就曾经用统计图形来说服英国政府,以改善军队的卫生状况。
我们将以GDP数据为例子,看看如何绘制经典的饼图和条形图。


数据

下面是我们要使用的数据,为2011年GDP前十的国家以及其具体的GDP:



USA        15094025
China      11299967
India       4457784
Japan       4440376
Germany     3099080
Russia      2383402
Brazil      2293954
UK          2260803
France      2217900
Italy       1846950                                                                                                                                                                                                                                 
  

饼图
  我们先来绘制饼图 (pie plot)。饼图适用于表达各个国家GDP所占的百分比。每一小块的面积代表了占比的多少:
   DSC0001.png
  具体代码如下,可以看到我们主要使用了matplotlib.pyplot工具包:



# Make a pie chart
# This script is written by Vamei, http://www.iyunv.com/vamei
# you may freely use it.
import matplotlib.pyplot as plt
# quants: GDP
# labels: country name
labels   = []
quants   = []
# Read data
for line in file('../data/major_country_gdp'):
info = line.split()
labels.append(info[0])
quants.append(float(info[1]))
# make a square figure
plt.figure(1, figsize=(6,6))
# For China, make the piece explode a bit
def explode(label, target='China'):
if label == target: return 0.1
else: return 0
expl = map(explode,labels)
# Colors used. Recycle if not enough.
colors  = ["pink","coral","yellow","orange"]
# Pie Plot
# autopct: format of "percent" string;
plt.pie(quants, explode=expl, colors=colors, labels=labels, autopct='%1.1f%%',pctdistance=0.8, shadow=True)
plt.title('Top 10 GDP Countries', bbox={'facecolor':'0.8', 'pad':5})
plt.show()

  

条形图
  下面我们尝试一下条形图(bar plot)。用每个长条的高度代表每个国家的GDP,长条越高,GDP值越高:
   DSC0002.png
  代码如下:



"""
Make a pie chart
This script is written by Vamei, http://www.iyunv.com/vamei
you may freely use it.
"""
import matplotlib.pyplot as plt
import numpy as np
# quants: GDP
# labels: country name
labels   = []
quants   = []
# Read data
for line in file('../data/major_country_gdp'):
info = line.split()
labels.append(info[0])
quants.append(float(info[1]))
width = 0.4
ind = np.linspace(0.5,9.5,10)
# make a square figure
fig = plt.figure(1, figsize=(12,6))
ax  = fig.add_subplot(111)
# Bar Plot
ax.bar(ind-width/2,quants,width,color='coral')
# Set the ticks on x-axis
ax.set_xticks(ind)
ax.set_xticklabels(labels)
# labels
ax.set_xlabel('Country')
ax.set_ylabel('GDP (Billion US dollar)')
# title
ax.set_title('Top 10 GDP Countries', bbox={'facecolor':'0.8', 'pad':5})
plt.show()
  该代码中我们利用了ax对象,以便控制刻度以及刻度所对应的国家名。这与我们在pie plot所做的有些不同(pie plot也可以这样实现,只是没有必要而已)。
  
  从两个图上看,亚洲国家的GDP还是很厉害的。西方的话就是美国一枝独秀了。
  

总结
  我们演示了饼图和条性图的绘制方法。matplotlib是一款功能强大的数据绘图工具,非常值得学习。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-58944-1-1.html 上篇帖子: Python压平嵌套列表 下篇帖子: 把python自然语言处理的nltk_data打包到360云盘,然后共享给朋友们
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表