设为首页 收藏本站
查看: 987|回复: 0

[经验分享] 关于Python Profilers性能分析器

[复制链接]

尚未签到

发表于 2015-4-25 08:45:02 | 显示全部楼层 |阅读模式
  想了解一下python的性能调试方法,结果就看到这一篇文章,想翻译下来作个记录
  原文来自于:http://docs.python.org/library/profile.html?highlight=profile#cProfile
  1. 介绍性能分析器
  profiler是一个程序,用来描述运行时的程序性能,并且从不同方面提供统计数据加以表述。Python中含有3个模块提供这样的功能,分别是cProfile, profile和pstats。这些分析器提供的是对Python程序的确定性分析。同时也提供一系列的报表生成工具,允许用户快速地检查分析结果。
  Python标准库提供了3个不同的性能分析器:
  
       
  • cProfile,推荐给大部分的用户,是C的一个扩展应用,因为其合理的运行开销,所以适合分析运行时间较长的。是基于lsprof。   
  • profile,一个纯python模块,它的接口和cProfile一致。在分析程序时,增加了很大的运行开销。如果你想扩展profiler的功能,可以试着继承这个模块   
  • hotshot, 一个试验性的c模块,关注减少分析时的运行开销,但是是以需要更长的数据后处理的次数为代价。不过这个模块不再被维护,也有可能在新的python版本中被弃用。
  2. 使用方法
  def foo():
sum = 0
for i in range(10000):
sum += i
sumA = bar()
sumB = bar()
return sum
def bar():
sum = 0
for i in range(100000):
sum += i
return sum
if __name__ == "__main__":
import cProfile
#直接把分析结果打印到控制台
cProfile.run("foo()")
#把分析结果保存到文件中,不过内容可读性差...需要调用pstats模块分析结果
cProfile.run("foo()", "result")
#还可以直接使用命令行进行操作
#>python -m cProfile myscript.py -o result
import pstats
#创建Stats对象
p = pstats.Stats("result")
#这一行的效果和直接运行cProfile.run("foo()")的显示效果是一样的
p.strip_dirs().sort_stats(-1).print_stats()
#strip_dirs():从所有模块名中去掉无关的路径信息
#sort_stats():把打印信息按照标准的module/name/line字符串进行排序
#print_stats():打印出所有分析信息
#按照函数名排序
p.strip_dirs().sort_stats("name").print_stats()
#按照在一个函数中累积的运行时间进行排序
#print_stats(3):只打印前3行函数的信息,参数还可为小数,表示前百分之几的函数信息
p.strip_dirs().sort_stats("cumulative").print_stats(3)
#还有一种用法
p.sort_stats('time', 'cum').print_stats(.5, 'foo')
#先按time排序,再按cumulative时间排序,然后打倒出前50%中含有函数信息
#如果想知道有哪些函数调用了bar,可使用
p.print_callers(0.5, "bar")
#同理,查看foo()函数中调用了哪些函数
p.print_callees("foo")
  以上是profile以及pstats模块的简单应用.

3.分析结果图解
DSC0000.png





4. 什么是确定性性能分析(Deterministic Profiling)
  确定性性能分析指的是反映所有的函数调用,返回,和异常事件的执行所用的时间,以及它们之间的时间间隔。相比之下,统计性性能分析指的是取样有效的程序指令,然后推导出所需要的时间,后者花费比较少的开销,但是给出的结果不够精确。
  在Python中,因为其是解释性语言,所以在执行程序的时候,会加入解释器的执行,这部分的执行是不需要进行性能分析的。Python自动为每一个事件提供一个hook,来定位需要分析的代码。除此之外,因为Python解释型语言的本质往往需要在执行程序的时候加入很多其它的开销,而确定性性能分析只会加入一点点处理开销。这样一来,确定性性能分析其实开销不大,还可以提供丰富的统计信息。
  函数调用次数的统计能够被用于确定程序中的bug,比如一个不符合常理的次数,明显偏多之类的,还可以用来确定可能的内联函数。函数内部运行时间的统计可被用来确定”hot loops”,那些需要运行时间过长,需要优化的部分;累积时间的统计可被用来确定比较高层次的错误,比如算法选择上的错误。Python的性能分析可以允许直接比较算法的递归实现与迭代实现的。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-60413-1-1.html 上篇帖子: Python PIL创建文字图片 下篇帖子: Python小技巧 – True or False
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表