设为首页 收藏本站
查看: 1006|回复: 0

[经验分享] python threading获取线程函数返回值

[复制链接]

尚未签到

发表于 2015-4-25 10:29:13 | 显示全部楼层 |阅读模式
  最近需要用python写一个环境搭建工具,多线程并行对环境各个部分执行一些操作,并最终知道这些并行执行的操作是否都执行成功了,也就是判断这些操作函数的返回值是否为0。但是threading并没有显式的提供获取各个线程函数返回值的方法,只好自己动手,下面就介绍一下自己的实现方式。
  一开始考虑到执行的操作可能有很多,而且后续会不断补充,因此先写了一个通用的多线程执行类,封装线程操作的基本方法,如下:

import threading
class MyThread(object):
def __init__(self, func_list=None):
#所有线程函数的返回值汇总,如果最后为0,说明全部成功
self.ret_flag = 0
self.func_list = func_list
self.threads = []
def set_thread_func_list(self, func_list):
"""
@note: func_list是一个list,每个元素是一个dict,有func和args两个参数
"""
self.func_list = func_list
def start(self):
"""
@note: 启动多线程执行,并阻塞到结束
"""
self.threads = []
self.ret_flag = 0
for func_dict in self.func_list:
if func_dict["args"]:
t = threading.Thread(target=func_dict["func"], args=func_dict["args"])
else:
t = threading.Thread(target=func_dict["func"])
self.threads.append(t)
for thread_obj in self.threads:
thread_obj.start()
for thread_obj in self.threads:
thread_obj.join()
def ret_value(self):
"""
@note: 所有线程函数的返回值之和,如果为0那么表示所有函数执行成功
"""
return self.ret_flag

  MyThread类会接受一个func_list参数,每个元素是一个dict,有func和args两个key,func是真正要执行的函数引用,args是函数的参数。其中最主要的方法是start方法,会多线程执行每个func,然后一直等到所有线程都执行结束后退出。接下来的关键就是如何对self.ret_flag设置正确的值,以判断所有的线程函数是否都返回0了。
  我的实现是,在MyThread class中写一个方法trace_func,作为直接的线程函数,这个trace_func中执行真正需要执行的函数,从而可以获取到该函数的返回值,设置给self.ret_flag。
  这个trace_func的第一参数是要执行的func引用,后面是这个func的参数,具体代码如下:

    def trace_func(self, func, *args, **kwargs):
"""
@note:替代profile_func,新的跟踪线程返回值的函数,对真正执行的线程函数包一次函数,以获取返回值
"""
ret = func(*args, **kwargs)
self.ret_flag += ret
  这样就需要修改start方法中Thread函数的设置,代码如下:

    def start(self):
"""
@note: 启动多线程执行,并阻塞到结束
"""
self.threads = []
self.ret_flag = 0
for func_dict in self.func_list:
if func_dict["args"]:
new_arg_list = []
new_arg_list.append(func_dict["func"])
for arg in func_dict["args"]:
new_arg_list.append(arg)
new_arg_tuple = tuple(new_arg_list)
t = threading.Thread(target=self.trace_func, args=new_arg_tuple)
else:
t = threading.Thread(target=self.trace_func, args=(func_dict["func"],))
self.threads.append(t)
for thread_obj in self.threads:
thread_obj.start()
for thread_obj in self.threads:
thread_obj.join()
  这样能够成功获得返回值了,实验:

def func1(ret_num):
print "func1 ret:%d" % ret_num
return ret_num
def func2(ret_num):
print "func2 ret:%d" % ret_num
return ret_num
def func3():
print "func3 ret:100"
return 100
mt = MyThread()
g_func_list = []
g_func_list.append({"func":func1,"args":(1,)})
g_func_list.append({"func":func2,"args":(2,)})
g_func_list.append({"func":func3,"args":None})
mt.set_thread_func_list(g_func_list)
mt.start()
print "all thread ret : %d" % mt.ret_flag
  最后的输出结果
  func1 ret:1
func2 ret:2
func3 ret:100
all thread ret : 103

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-60493-1-1.html 上篇帖子: Python自然语言处理学习笔记(13):2.5 WordNet 下篇帖子: 你有,我有,Python也有
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表