设为首页 收藏本站
查看: 1247|回复: 0

[经验分享] Hadoop 3.0磁盘均衡器(diskbalancer)新功能及使用介绍

[复制链接]

尚未签到

发表于 2018-10-28 11:47:08 | 显示全部楼层 |阅读模式
  尊重原创,转自:https://www.iteblog.com/archives/1905.html
  在HDFS中,DataNode 将数据块存储到本地文件系统目录中,具体的目录可以通过配置 hdfs-site.xml 里面的 dfs.datanode.data.dir 参数。在典型的安装配置中,一般都会配置多个目录,并且把这些目录分别配置到不同的设备上,比如分别配置到不同的HDD(HDD的全称是Hard Disk Drive)和SSD(全称Solid State Drives,就是我们熟悉的固态硬盘)上。
  当我们往HDFS上写入新的数据块,DataNode 将会使用volume选择策略来为这个块选择存储的地方。目前Hadoop支持两种volume选择策略:round-robin 和 available space(详情参见:HDFS-1804),我们可以通过 dfs.datanode.fsdataset.volume.choosing.policy 参数来设置。
  循环(round-robin)策略将新块均匀分布在可用磁盘上;而可用空间( available-space )策略优先将数据写入具有最大可用空间的磁盘(通过百分比计算的)。正如下图所示:

  如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop
  默认情况下,DataNode 是使用基于round-robin策略来写入新的数据块。然而在一个长时间运行的集群中,由于HDFS中的大规模文件删除或者通过往DataNode 中添加新的磁盘仍然会导致同一个DataNode中的不同磁盘存储的数据很不均衡。即使你使用的是基于可用空间的策略,卷(volume)不平衡仍可导致较低效率的磁盘I/O。比如所有新增的数据块都会往新增的磁盘上写,在此期间,其他的磁盘会处于空闲状态,这样新的磁盘将会是整个系统的瓶颈。
  最近,Apache Hadoop community开发了好几个离线的脚本(可以参见 HDFS-1312 或者 hadoop-balancer )以缓解数据不平衡问题。然而这些脚本都是在HDFS代码库之外,在执行这些脚本往不同磁盘之间移动数据的时候,需要要求DataNode处于关闭状态。结果,HDFS-1312 还引入了一个在线磁盘均衡器,旨在根据各种指标重新平衡正在运行DataNode上的磁盘数据。和现有的HDFS均衡器类似,HDFS 磁盘均衡器在DataNode中以线程的形式运行,并在相同存储类型的卷(volumes)之间移动数据。我们要注意,本文介绍的HDFS 磁盘均衡器是在同一个DataNode中的不同磁盘之间移动数据,而之前的HDFS均衡器是在不同的DataNode之间移动数据。
  在下面的文章中,我将介绍如何使用这个新功能。
  让我们通过一个例子逐步探讨这个有用的功能。首先,确保所有DataNode上的 dfs.disk.balancer.enabled 参数设置成true。本例子中,我们的DataNode已经挂载了一个磁盘(/mnt/disk1),现在我们往这个DataNode上挂载新的磁盘(/mnt/disk2),我们使用 df命令来显示磁盘的使用率:
# df -h…./var/disk1      5.8G  3.6G  1.9G  66% /mnt/disk1/var/disk2      5.8G   13M  5.5G   1% /mnt/disk2  从上面的输出可以看出,两个磁盘的使用率很不均衡,所以我们来将这两个磁盘的数据均衡一下。
  典型的磁盘平衡器任务涉及三个步骤(通过HDFS的diskbalancer 命令):plan, execute 和 query。第一步,HDFS客户端从NameNode上读取指定DataNode的的必要信息以生成执行计划:
# hdfs diskbalancer -plan lei-dn-3.example.org16/08/19 18:04:01 INFO planner.GreedyPlanner: Starting plan for Node : lei-dn-3.example.org:2000116/08/19 18:04:01 INFO planner.GreedyPlanner: Disk Volume set 03922eb1-63af-4a16-bafe-fde772aee2fa Type : DISK plan completed.16/08/19 18:04:01 INFO planner.GreedyPlanner: Compute Plan for Node : lei-dn-3.example.org:20001 took 5 ms16/08/19 18:04:01 INFO command.Command: Writing plan to : /system/diskbalancer/2016-Aug-19-18-04-01  从上面的输出可以看出,HDFS磁盘平衡器通过使用DataNode报告给NameNode的磁盘使用信息并结合计划程序来计算指定DataNode上数据移动计划的步骤,每个步骤指定要移动数据的源卷和目标卷,以及预计移动的数据量。
  截止到撰写本文的时候,HDFS仅仅支持 GreedyPlanner,其不断地将数据从最常用的设备移动到最少使用的设备,直到所有数据均匀地分布在所有设备上。用户还可以在使用 plan 命令的时候指定空间利用阀值,也就是说,如果空间利用率的差异低于此阀值,planner 则认为此磁盘已经达到了平衡。当然,我们还可以通过使用 --bandwidth 参数来限制磁盘数据移动时的I/O。
  磁盘平衡执行计划生成的文件内容格式是Json的,并且存储在HDFS之上。在默认情况下,这些文件是存储在 /system/diskbalancer 目录下面:
# hdfs dfs -ls /system/diskbalancer/2016-Aug-19-18-04-01Found 2 items-rw-r--r--   3 hdfs supergroup       1955 2016-08-19 18:04 /system/diskbalancer/2016-Aug-19-18-04-01/lei-dn-3.example.org.before.json-rw-r--r--   3 hdfs supergroup        908 2016-08-19 18:04 /system/diskbalancer/2016-Aug-19-18-04-01/lei-dn-3.example.org.plan.json  可以通过下面的命令在DataNode上执行这个生成的计划:
$ hdfs diskbalancer -execute /system/diskbalancer/2016-Aug-17-17-03-56/172.26.10.16.plan.json16/08/17 17:22:08 INFO command.Command: Executing "execute plan" command  这个命令将JSON里面的计划提交给DataNode,而DataNode会启动一个名为BlockMover的线程中执行这个计划。我们可以使用 query 命令来查询DataNode上diskbalancer任务的状态:
# hdfs diskbalancer -query lei-dn-3:2000116/08/19 21:08:04 INFO command.Command: Executing "query plan" command.Plan File: /system/diskbalancer/2016-Aug-19-18-04-01/lei-dn-3.example.org.plan.jsonPlan>Result: PLAN_DONE  上面结果输出的PLAN_DONE表示disk-balancing task已经执行完成。为了验证磁盘平衡器的有效性,我们可以使用df -h 命令来查看各个磁盘的空间使用率:
# df -hFilesystem     >…./var/disk1      5.8G  2.1G  3.5G  37% /mnt/disk1/var/disk2      5.8G  1.6G  4.0G  29% /mnt/disk2  上面的结果证明,磁盘平衡器成功地将 /var/disk1 和 /var/disk2 空间使用率的差异降低到10%以下,说明任务完成!
  本文翻译自:How-to: Use the New HDFS Intra-DataNode Disk Balancer in Apache Hadoop


运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-627465-1-1.html 上篇帖子: 优化Hadoop Balancer平衡的速度 下篇帖子: 零基础Hadoop入门,哪里学起?
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表