设为首页 收藏本站
查看: 1061|回复: 0

[经验分享] 【技术帖】Apache Kylin 高级设置:聚合组(Aggregation Group)原理解析

[复制链接]

尚未签到

发表于 2018-11-18 06:47:05 | 显示全部楼层 |阅读模式
DSC0000.jpg

  众所周知,Apache Kylin 的主要工作就是为源数据构建 N 个维度的 Cube,实现聚合的预计算。理论上而言,构建 N 个维度的 Cube 会生成 2N 个 Cuboid, 如图 1 所示,构建一个 4 个维度(A,B,C, D)的 Cube,需要生成 16 个Cuboid。
DSC0001.jpg

  (图1)
  随着维度数目的增加 Cuboid 的数量会爆炸式地增长,不仅占用大量的存储空间还会延长 Cube 的构建时间。为了缓解 Cube 的构建压力,减少生成的 Cuboid 数目,Apache Kylin 引入了一系列的高级设置,帮助用户筛选出真正需要的 Cuboid。这些高级设置包括聚合组(Aggregation Group)、联合维度(Joint Dimension)、层级维度(Hierachy Dimension)和必要维度(Mandatory Dimension)等,本系列将深入讲解这些高级设置的含义及其适用的场景。
  本文将着重介绍聚合组的实现原理与应用场景实例。
  聚合组(Aggregation Group)
  用户根据自己关注的维度组合,可以划分出自己关注的组合大类,这些大类在 Apache Kylin 里面被称为聚合组。例如图 1 中展示的 Cube,如果用户仅仅关注维度 AB 组合和维度 CD 组合,那么该 Cube 则可以被分化成两个聚合组,分别是聚合组 AB 和聚合组 CD。如图 2 所示,生成的 Cuboid 数目从 16 个缩减成了 8 个。
DSC0002.jpg

  (图2)
  用户关心的聚合组之间可能包含相同的维度,例如聚合组 ABC 和聚合组 BCD 都包含维度 B 和维度 C。这些聚合组之间会衍生出相同的 Cuboid,例如聚合组 ABC 会产生 Cuboid BC,聚合组 BCD 也会产生 Cuboid BC。这些 Cuboid不会被重复生成,一份 Cuboid 为这些聚合组所共有,如图 3 所示。
DSC0003.jpg

  (图3)
  有了聚合组用户就可以粗粒度地对 Cuboid 进行筛选,获取自己想要的维度组合。
  应用实例

  假设创建一个交易数据的 Cube,它包含了以下一些维度:顾客>
DSC0004.jpg

  (图4)
  聚合组 1: [cal_dt, city, pay_type]
  聚合组 2: [cal_dt, city, buyer_id]
  在不考虑其他干扰因素的情况下,这样的聚合组将节省不必要的 3 个 Cuboid: [pay_type, buyer_id]、[city, pay_type, buyer_id] 和 [cal_dt, pay_type, buyer_id] 等,节省了存储资源和构建的执行时间。
  Case 1:
  SELECT cal_dt, city, pay_type, count(*) FROM table GROUP BY cal_dt, city, pay_type 则将从 Cuboid [cal_dt, city, pay_type] 中获取数据。
  Case2:
  SELECT cal_dt, city, buy_id, count(*) FROM table GROUP BY cal_dt, city, buyer_id 则将从 Cuboid [cal_dt, city, buyer_id] 中获取数据。
  Case3 如果有一条不常用的查询:
  SELECT pay_type, buyer_id, count(*) FROM table GROUP BY pay_type, buyer_id 则没有现成的完全匹配的 Cuboid。
  此时,Apache Kylin 会通过在线计算的方式,从现有的 Cuboid 中计算出最终结果。


运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-636331-1-1.html 上篇帖子: 【技术帖】Apache Kylin 高级设置:层级维度(Hierarchy Dimension)原理 下篇帖子: Apache Kylin 深入Cube和查询优化
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表