设为首页 收藏本站
查看: 1087|回复: 0

[经验分享] hive优化----控制hive中的reduce数:

[复制链接]
累计签到:1 天
连续签到:1 天
发表于 2015-5-7 08:58:15 | 显示全部楼层 |阅读模式
1. Hive自己如何确定reduce数:
reduce个数的设定极大影响任务执行效率,不指定reduce个数的情况下,Hive会猜测确定一个reduce个数,基于以下两个设定:
hive.exec.reducers.bytes.per.reducer(每个reduce任务处理的数据量,默认为1000^3=1G)
hive.exec.reducers.max(每个任务最大的reduce数,默认为999)
计算reducer数的公式很简单N=min(参数2,总输入数据量/参数1)
即,如果reduce的输入(map的输出)总大小不超过1G,那么只会有一个reduce任务;
如:select pt,count(1) from popt_tbaccountcopy_mes wherept = '2012-07-04' group by pt;
/group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04 总大小为9G多,因此这句有10个reduce

2. 调整reduce个数方法一:
调整hive.exec.reducers.bytes.per.reducer参数的值;
set hive.exec.reducers.bytes.per.reducer=500000000; (500M)
select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group bypt; 这次有20个reduce

3. 调整reduce个数方法二;
set mapred.reduce.tasks = 15;
select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group bypt;这次有15个reduce

4. reduce个数并不是越多越好;
同map一样,启动和初始化reduce也会消耗时间和资源;
另外,有多少个reduce,就会有多少个输出文件,如果生成了很多个小文件,那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题;

5. 什么情况下只有一个reduce;
很多时候你会发现任务中不管数据量多大,不管你有没有设置调整reduce个数的参数,任务中一直都只有一个reduce任务;
其实只有一个reduce任务的情况,除了数据量小于hive.exec.reducers.bytes.per.reducer参数值的情况外,还有以下原因:
a) 没有group by的汇总,比如把selectpt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt; 写成 select count(1) from popt_tbaccountcopy_mes where pt ='2012-07-04';
这点非常常见,希望大家尽量改写。
b) 用了Order by
c) 有笛卡尔积
通常这些情况下,除了找办法来变通和避免,我暂时没有什么好的办法,因为这些操作都是全局的,所以hadoop不得不用一个reduce去完成;

同样的,在设置reduce个数的时候也需要考虑这两个原则:使大数据量利用合适的reduce数;使单个reduce任务处理合适的数据量;
Hive是将符合SQL语法的字符串解析生成可以在Hadoop上执行的MapReduce的工具。
使用Hive尽量按照分布式计算的一些特点来设计sql,和传统关系型数据库有区别,
所以需要去掉原有关系型数据库下开发的一些固有思维。
基本原则:
1:尽量尽早地过滤数据,减少每个阶段的数据量,对于分区表要加分区,同时只选择需要使用到的字段
select ... fromA
join B
on A.key =B.key
whereA.userid>10
andB.userid<10
andA.dt='20120417'
andB.dt='20120417';
应该改写为:
select ....from (select .... from A
wheredt='201200417'
anduserid>10
) a
join ( select.... from B
wheredt='201200417'
and userid <10
) b
on a.key =b.key;
2:尽量原子化操作,尽量避免一个SQL包含复杂逻辑
可以使用中间表来完成复杂的逻辑
drop table ifexists tmp_table_1;
create table ifnot exists tmp_table_1 as
select ......;
drop table ifexists tmp_table_2;
create table ifnot exists tmp_table_2 as
select ......;
drop table ifexists result_table;
create table ifnot exists result_table as
select ......;
drop table ifexists tmp_table_1;
drop table ifexists tmp_table_2;
3:单个SQL所起的JOB个数尽量控制在5个以下
4:慎重使用mapjoin,一般行数小于2000行,大小小于1M(扩容后可以适当放大)的表才能使用,小表要注意放在join的左边(目前TCL里面很多都小表放在join的右边)。
否则会引起磁盘和内存的大量消耗
5:写SQL要先了解数据本身的特点,如果有join ,group操作的话,要注意是否会有数据倾斜
如果出现数据倾斜,应当做如下处理:
sethive.exec.reducers.max=200;
setmapred.reduce.tasks= 200;---增大Reduce个数
sethive.groupby.mapaggr.checkinterval=100000 ;--这个是group的键对应的记录条数超过这个值则会进行分拆,值根据具体数据量设置
set hive.groupby.skewindata=true;--如果是group by过程出现倾斜 应该设置为true
sethive.skewjoin.key=100000; --这个是join的键对应的记录条数超过这个值则会进行分拆,值根据具体数据量设置
sethive.optimize.skewjoin=true;--如果是join 过程出现倾斜 应该设置为true
6:如果union all的部分个数大于2,或者每个union部分数据量大,应该拆成多个insert into 语句,实际测试过程中,执行时间能提升50%
insert overwitetable tablename partition (dt= ....)
select .....from (
select ... fromA
union all
select ... fromB
union all
select ... fromC
) R
where ...;
可以改写为:
insert intotable tablename partition (dt= ....)
select ....from A
WHERE ...;
insert intotable tablename partition (dt= ....)
select ....from B
WHERE ...;
insert intotable tablename partition (dt= ....)
select ....from C
WHERE ...;


运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-64476-1-1.html 上篇帖子: 伪分布式安装Hadoop + zookeeper + hbase安装配置 下篇帖子: Hadoop源码分析----RPC反射机制 reduce
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表