设为首页 收藏本站
查看: 1229|回复: 0

[经验分享] memcached的分布式

[复制链接]

尚未签到

发表于 2018-12-25 10:07:20 | 显示全部楼层 |阅读模式
  一:memcached的分布式
  虽然memcached被称为“分布式”缓存服务器,但是服务器端并没有“分布式”的功能。而是通过客户端来实现的。
  Memcached分布式原理:
  假设有5台memcached服务器:node1,node2… node5。现在要保存键为key1,key2…key10的数据。首先往memcached中添加key1。将key1传给客户端程序之后,客户端实现的算法会根据这个键“key1”来决定保存数据的memcached服务器。
  将服务器选定之后,将会用选定的服务器来保存“key1”和对应的值。
  在获取数据的时候,通过先根据要获取的数据的key来根据客户端实现的相同的算法选择对应的数据保存的服务器,然后取出数据。
  这样就实现了memcached的分布式。Memcached的服务器增多,则键就会更加的分散。及时一台服务器挂掉,也不会影响其他的缓存。
  Memcached分布式方法:
  1.根据余数计算
  这种方法简单的说就是”根据服务器的台数的余数来进行分散“。首先求取键所对应的整数哈希值,然后根据余数来选择服务器。
  这种方法简单高效,而且数据的分散性也非常的好。但是问题是当增加或者删除一台memcached服务器的时候,余数就会发生巨大的变化。这样就没有办法获取和保存时间相应的服务器。从而会极大的降低缓存的命中率
  2. 一致性哈希
  这种方法首先求出memcached服务器的哈希值,然后将它分配到0~2^32的圆上,然后使用同样的办法求出数据的健的哈希值,将其映射到圆上。然后从数据映射的点开始顺时针的查找,将数据保存到查找到的第一台服务器上面。如果超出了2^32仍然没有找到服务器,那么就将数据保存到第一台memcached服务器上面。
  这种方法在一定程度上决了在修改memcached服务器数据的时候对缓存命中率的影响。在一致性哈希算法中,只有在这个圆上,从增加服务器的那个点逆时针遇到的第一台服务器之间的健会受到影响。因此一致性哈希最大限度的抑制了键的重新分布。
  另外一些一致性哈希算法也采用了虚拟节点的办法。因为使用一般的hash函数的话,服务器的映射地点会分布的可能不太均匀,因此使用虚拟节点的思想,为每一台服务器在圆上分配100~300个点。这样就能够抑制分布不均匀,最大限度的减少服务器增加或者减少的时候缓存的重新分布。
  参考代码:
import java.util.Collection;  
import java.util.SortedMap;
  
import java.util.TreeMap;
  

  
public class ConsistentHash {
  

  
private final HashFunction hashFunction;
  
private final int numberOfReplicas;
  
private final SortedMap circle = new TreeMap();
  

  
public ConsistentHash(HashFunction hashFunction, int numberOfReplicas,
  
     Collection nodes) {
  
   this.hashFunction = hashFunction;
  
   this.numberOfReplicas = numberOfReplicas;
  

  
   for (T node : nodes) {
  
     add(node);
  
   }
  
}
  

  
public void add(T node) {
  
   for (int i = 0; i < numberOfReplicas; i++) {
  
     circle.put(hashFunction.hash(node.toString() + i), node);
  
   }
  
}
  

  
public void remove(T node) {
  
   for (int i = 0; i < numberOfReplicas; i++) {
  
     circle.remove(hashFunction.hash(node.toString() + i));
  
   }
  
}
  

  
public T get(Object key) {
  
   if (circle.isEmpty()) {
  
     return null;
  
   }
  
   int hash = hashFunction.hash(key);
  
   if (!circle.containsKey(hash)) {
  
     SortedMap tailMap = circle.tailMap(hash);
  
     hash = tailMap.isEmpty() ? circle.firstKey() : tailMap.firstKey();
  
   }
  
   return circle.get(hash);
  
}
  

  
}
  原文来自:http://www.cnblogs.com/rollenholt/p/3381429.html



运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-655573-1-1.html 上篇帖子: Memcached在大型网站中应用 下篇帖子: Memcached的介绍和应用
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表